Abstract:
Pick and place tape release techniques and tools that allow thin, fragile semiconductor dies to be removed from wafer tape with reduced tape release forces applied to the semiconductor dies. For example, a method for removing semiconductor die from wafer tape includes mounting a wafer ring having wafer tape and one or more dies attached to the wafer tape, and aligning an ejector pin assembly under a target die to be removed from the wafer tape. The ejector pin assembly includes a vacuum housing, an ejector pin, a suction plate, and an aperture formed in the suction plate in alignment with the ejector pin. A vacuum is generated in the vacuum housing to draw the tape against a surface of the suction plate. The ejector pin is extended through the vacuum housing out from the aperture of the suction plate to push against a backside of the target die and release the tape from the backside of the target die, and as the tape is released from the backside of the target die, the tape is drawn down against the suction plate by suction force of the vacuum.
Abstract:
An integrated circuit package includes: a substrate; an electronic circuit located on the substrate, the electronic circuit comprising a topography of at least one level; a cooling device located over the electronic circuit; a compliant interface disposed between the electronic circuit and the cooling device, wherein the compliant interface comprises a first surface and a second surface and wherein the first surface is in thermal contact with the electronic circuit, and wherein the compliant interface is preformed from a compliant material such that the first surface substantially conforms to the topography of the electronic circuit.
Abstract:
A structure for cooling an electronic device is disclosed. The structure includes a solid heat-conducting layer disposed over the electronic device. The solid heat-conducting layer is a planar surface in contact with the electronic device. The structure further includes a plurality of copper spring elements disposed between the solid heat-conducting layer and the electronic device for providing a heat path from the electronic device and wherein the plurality of spring elements extend in an upper direction away from the electronic device and wherein the plurality of spring elements include a spring for offering resistance when loaded and wherein the spring elements have a smaller profile at a first end in contact with the electronic device, wherein the profile increases in size at a second end in contact with the solid heat-conducting layer.
Abstract:
An integrated circuit package includes: a substrate; an electronic circuit located on the substrate, the electronic circuit comprising a topography of at least one level; a cooling device located over the electronic circuit; a compliant interface disposed between the electronic circuit and the cooling device, wherein the compliant interface comprises a first surface and a second surface and wherein the first surface is in thermal contact with the electronic circuit, and wherein the compliant interface is preformed from a compliant material such that the first surface substantially conforms to the topography of the electronic circuit.
Abstract:
A method for cooling an electronic device includes forming a spring structure by coupling a plurality of spring elements with a fin portion oriented at an angle, wherein a first end of the fin portion has a narrowed tip; coupling the spring structure with a planar heat-conducting material to form a first heat-conducting layer; positioning the first heat-conducting layer such that the planar heat-conducting material is on top; and placing the first heat-conducting layer over the electronic device such that the fin portion is oriented at an angle toward the electronic device, and such that the narrowed tip of the fin portion is in contact with the top surface of the electronic device.
Abstract:
A structure for cooling an electronic device is disclosed. The structure includes a top layer disposed over the electronic device. The structure further includes a plurality of spring elements disposed between the top layer and the electronic device for providing a heat path from the electronic device and wherein the plurality of spring elements provide mechanical compliance. In one alternative, the structure further includes a solid heat-conducting layer disposed over the electronic device, wherein the plurality of spring elements are coupled to the solid heat-conducting layer.
Abstract:
A structure for cooling an electronic device is disclosed. The structure includes a top layer disposed over the electronic device. The structure further includes a plurality of spring elements disposed between the top layer and the electronic device, wherein at least one spring element comprises a spring portion, provides a heat path from the electronic device and provides mechanical compliance. The structure further includes a seal for containing a space between the top layer and the electronic device, wherein the space contained includes the plurality of spring elements, and a liquid with vaporizing capability disposed with the space contained.
Abstract:
Improvements in placement of timing patterns in self-servowriting include correcting for systematic errors due to geometric effects. A correction is made for varying systematic errors, such as when the recording head has spatially separate read and write elements. Further, servopattern rotation due to residual or unmeasured systematic errors is reduced by using a once per revolution clock index derived from the motor drive current waveform or any other sensor. In one aspect of correcting for systematic errors in the writing of timing patterns on a storage medium of a storage device, a time interval between a trigger pattern written at a first radial position of the storage medium and a rotational index is measured. The rotational index is related to the rotational orientation of the storage medium with respect to a fixed frame of the storage device. The location of another trigger pattern to be written is shifted, using the measured time interval to determine the shift in location for the another trigger pattern.
Abstract:
A method for writing timing marks on a rotatable storage medium, such as on a disk in a disk drive, includes the steps of: 1) during a rotation of the disk, detecting the passage of at least a portion of a first timing mark located at a first radius of the disk, and 2) writing a second timing mark at a second radius of the disk, the location of the second timing mark being based at least in part on a stored calculation of a delay from the time of passage of the first timing mark during a rotation of the rotatable storage medium. The location of the second timing mark is calculated based on alternative time intervals between detected timing marks and on various functions of the time intervals.
Abstract:
Improvements in placement of timing patterns in self servo writing include correcting for random and systematic errors due to geometric effects. In a disk drive having a recording head with separate read and write elements, a method for determining separation between the elements and for correcting for such errors as a function of skew angle between the head and the disk. Errors resulting from misalignment and non-parallelism of the elements as well as misalignment of the head on it its actuator are also detected and corrected. Errors due to changes in rotational velocity of the disk and misplacement of timing patterns with respect to adjacent timing patterns are detected and corrected. In general, a single revolution process may be used to both write and detect random errors on each track and corrected on subsequent tracks.