Abstract:
In one embodiment, a device evaluates a set of training data for a machine learning model to identify a missing feature subset in a feature space of the set of training data. The device identifies a plurality of network nodes eligible to initiate an attack on a network to generate the missing feature subset. One or more attack nodes are selected from among the plurality of network nodes. An attack routine is provided to the one or more attack nodes to cause the one or more attack nodes to initiate the attack. An indication that the attack has completed is then received from the one or more attack nodes.
Abstract:
In one embodiment, network data is received at a first node in a computer network. A low precision machine learning model is used on the network data to detect a network event. A notification is then sent to a second node in the computer network that the network event was detected, to cause the second node to use a high precision machine learning model to validate the detected network event.
Abstract:
In one embodiment, techniques are shown and described relating to attack mitigation using learning machines. A node may receive network traffic data for a computer network, and then predict a probability that one or more nodes are under attack based on the network traffic data. The node may then decide to mitigate a predicted attack by instructing nodes to forward network traffic on an alternative route without altering an existing routing topology of the computer network to reroute network communication around the one or more nodes under attack, and in response, the node may communicate an attack notification message to the one or more nodes under attack.
Abstract:
In one embodiment, a service receives telemetry data collected from a plurality of different networks. The service combines the telemetry data into a synthetic input trace. The service inputs the synthetic input trace into a plurality of machine learning models to generate a plurality of predicted key performance indicators (KPIs), each of the models having been trained to assess telemetry data from an associated network in the plurality of different networks and predict a KPI for that network. The service compares the plurality of predicted KPIs to identify one of the plurality of different networks as exhibiting an abnormal behavior.
Abstract:
The present technology pertains to a system, method, and non-transitory computer-readable medium for evaluating the impact of network changes. The technology can detect a temporal event, wherein the temporal event is associated with a change in a network configuration, implementation, or utilization; define a first period prior to the temporal event and a second period posterior to the temporal event; and compare network data collected in the first period and network data collected in the second period.
Abstract:
The present technology pertains to a system, method, and non-transitory computer-readable medium for evaluating the impact of network changes. The technology can detect a temporal event, wherein the temporal event is associated with a change in a network configuration, implementation, or utilization. The technology defines, based on a nature of the temporal event, a first period prior to the temporal event or a second period posterior to the temporal event. The technology compares network data collected in the first period and network data collected in the second period.
Abstract:
Technologies for dynamically generating topology and location based network insights are provided. In some examples, a method can include determining statistical changes in time series data including a series of data points associated with one or more conditions or parameters of a network; determining a period of time corresponding to one or more of the statistical changes in the time series data; obtaining telemetry data corresponding to a segment of the network and one or more time intervals, wherein a respective length of each time interval is based on a length of the period of time corresponding to the one or more of the statistical changes in the time series data; and generating, based on the telemetry data, insights about the segment of the network, the insights identifying a trend or statistical deviation in a behavior of the segment of the network during the one or more time intervals.
Abstract:
In one embodiment, possible voting nodes in a network are identified. The possible voting nodes each execute a classifier that is configured to select a label from among a plurality of labels based on a set of input features. A set of one or more eligible voting nodes is selected from among the possible voting nodes based on a network policy. Voting requests are then provided to the one or more eligible voting nodes that cause the one or more eligible voting nodes to select labels from among the plurality of labels. Votes are received from the eligible voting nodes that include the selected labels and are used to determine a voting result.
Abstract:
The disclosed technology relates to a process of providing dynamic machine learning on premise model selection. In particular, a set of machine learned models are generated and provided to an on premise computing device. The machine learned models are generated using a cluster of customer data (e.g. telemetric data) stored on a computing network having different ranges of computational complexity. One of the machine learned models from the set of machine learned models will be selected based on the current available computational resources detected at the on premise computing device. Different machine learned models from the set of machine learned models can then be selected based on changes in the available computational resources and/or customer feedback
Abstract:
In one embodiment, a device receives data regarding usage of access points in a network by a plurality of clients in the network. The device maintains an access point graph that represents the access points in the network as vertices of the access point graph. The device generates, for each of the plurality of clients, client trajectories as trajectory subgraphs of the access point graph. A particular client trajectory for a particular client comprises a set of edges between a subset of the vertices of the access point graph and represents transitions between access points in the network performed by the particular client. The device identifies a transition pattern from the client trajectories by deconstructing the trajectory subgraphs. The device uses the identified transition pattern to effect a configuration change in the network.