Abstract:
In response to receiving a probe request from a mobile client, an access point determines whether it should suppress a probe response. The access point receives a probe request from a wireless client device, and prepares a probe response to respond to the probe request. The access point determines whether the wireless client device is likely to associate with the wireless access point. Responsive to a determination that the wireless client device is unlikely to associate with the wireless access point, the access point suppresses the transmission of the probe response.
Abstract:
A particular first wireless device having a plurality of antennas and that is part of a group of a plurality of first wireless devices, transmits to a second wireless device (whose location is to be determined) a packet across the plurality of antennas of the particular first wireless device simultaneously with a plurality of packets transmitted by a corresponding one of other first wireless devices in the group. The packet transmitted by the particular first wireless device uses a subset of a set of subcarriers available for use in the packet such that substantially the entire set of subcarriers are used in the aggregate across the plurality of packets simultaneously transmitted by the plurality of first wireless devices in the group to the second wireless device. The simultaneous reception of the plurality of packets at the second wireless device enables the second wireless device to determine its location.
Abstract:
A first device having a plurality of antennas wirelessly transmits multiple series of test packets to a second device having one or more antennas, each series of test packets being transmitted with a different level of interference imposed on the test packets. The first device determines a packet error rate for each series of test packets transmitted by the first device. The first device derives an estimate of an interference cancellation capability of the second device based on the packet error rate for different levels of interference.
Abstract:
In a wireless local area network, each of multiple access points, in a high density deployment, are configured to suppress co-channel interference. A first access point having a plurality of antennas beamforms a transmission to a wireless client device within a null-space or with the weakest singular eigenmodes of a wireless channel between the first access point and at least one co-channel second access point. Techniques are presented herein for situations in which any given access point has two or more co-channel access points. In addition, an access point may perform receive side suppression with respect to a transmission (made by a co-channel access point to one of its associated wireless client devices) that is received from that co-channel access point.
Abstract:
A system and a method to delegate out-of-band (OOB) management of a shared ultra-wideband (UWB) clock. The system may comprise a tagged device with a UWB tag and multiple anchors. The tagged device may be configured to establish at least one OOB communication link with at least one anchor, transmit UWB compatibility information to multiple anchors, establish a UWB communication links with the anchors, and exchange OOB synchronization parameters and UWB synchronization parameters with the anchors. Further, the tagged device may be configured to define new instructions for ranging round operations based at least in part upon the OOB synchronization parameters and the UWB synchronization parameters, update existing instructions with the new instructions in the ranging round operations, and perform the ranging round in accordance with the updated instructions.
Abstract:
Techniques for wireless network management are provided. A set of characteristics data for a plurality of different wireless networks in a common physical space is collected, and it is determined, based on the set of characteristics data, that the plurality of wireless networks are experiencing spectrum contention. A set of radio frequency (RF) parameter modifications is generated based on the set of characteristics data, and one or more of the plurality of wireless networks are instructed to implement the set of RF parameter modifications. A second set of characteristics data is collected for the plurality of wireless networks.
Abstract:
A method includes measuring an interference caused by a first radio in a multi-link device to a second radio of the multi-link device and in response to determining that the interference exceeds a threshold, repeatedly narrowing a transmission beam width of the first radio until the interference falls below the threshold.
Abstract:
Techniques for dynamic prioritization of presenting devices in wireless deployments are provided. Data relating to a transmission between a first device and a second device is received, and the first device is classified as a presenting device for the transmission based on the data relating to the transmission. An access point (AP) providing connectivity to the first device is identified, and the AP is configured to prioritize traffic transmitted from the first device responsive to classifying the first device as the presenting device.
Abstract:
Embodiments herein describe performing AoA resolving to identify a plurality of AoAs corresponding to a multipath signal and then using AP voting to identify a location of the client device. AoA resolving enables an AP to identify the different angles at which a multipath signal reaches the AP. That is, due to reflections, a wireless signal transmitted by a single client device may reach the AP using multiple paths that each has their own AoA. The AP can perform AoA resolving to identify the AoAs for the different paths in a multipath signal. In one embodiment, the AoAs for two APs (or a subset of the APs) can be used to identify cross points or intersection points that represent candidate locations of the client device. A voting module can determine whether those cross points corresponds to AoAs identified by the remaining APs.
Abstract:
Aspects described herein include a method comprising predicting, based on one or more transmission characteristics, error values for a sequence of bit positions used for modulating data within a packet. The method further comprises generating a bitmap that maps one or more payload bits and one or more padding bits of the packet to respective bit positions of the sequence. The one or more padding bits are preferentially mapped to respective bit positions having relatively greater error values. The method further comprises modulating the sequence according to the bitmap.