Abstract:
An implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can include one or more MRI Safe components. In an example, the implantable device includes a battery including a first electrode and a second electrode separate from the first electrode. The second electrode includes a first surface and a second surface. The second electrode includes a slot through the second electrode from the first surface toward the second surface. The slot extends from a perimeter of the second electrode to an interior of the second electrode. The slot is configured to at least partially segment a surface area of the second electrode to reduce a radial current loop size in the second electrode.
Abstract:
An example includes apparatus including a non-thin-film battery, that can include an implantable housing, electronics disposed in the implantable housing, and a battery disposed in the implantable housing, the battery comprising: a plurality of cells electrically connected to one another, with at least one cell including a stack including at least one substantially planar anode having a thickness greater than 1 micrometer and at least one substantially planar cathode having a thickness greater than 1 micrometer, and a cell housing enclosing the stack of substantially planar anodes and cathodes and displacing less than approximately 0.024 cubic centimeters, wherein the plurality of cells are interconnected in at least one of series and parallel, and terminals interconnecting the battery and the electronics.
Abstract:
One example includes a battery that includes a stack of at least one substantially planar anode and at least one substantially planar cathode, wherein the stack defines a contoured exterior, and a battery housing enclosing the stack, the battery housing defining a battery housing exterior, wherein the contoured exterior of the stack is shaped to conform to a contoured interior of the battery housing that approximately conforms to the battery housing exterior, the battery produced by the process of modeling, using fluid dynamics, an exterior of a biocompatible housing and shaping the battery housing to conform to at least some of the exterior of the biocompatible housing.