Abstract:
Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
Abstract:
An implantable medical device (IMD) with an inductive coil for wireless communication and/or power transfer. The inductive coil may be disposed about a housing of the IMD. The housing may include a magnetically permeable material that is configured to operate as a flux concentrator for concentrating non-radiative near-field energy through the inductive coil. In some cases, the near-field energy may be captured and converted into electrical energy that may be used to recharge a rechargeable power source of the IMD.
Abstract:
The present subject matter includes an implantable medical device with a capture feature at or near the proximal end. In some cases, the capture feature includes a hold that is configured to facilitate a releasable connection with a delivery device that is used to deliver the implantable medical device to a target implant site.
Abstract:
This disclosure relates to methods and apparatus for enhanced dielectric properties for electrolytic capacitors to store energy in an implantable medical device. One aspect of the present subject matter includes a method for manufacturing a capacitor adapted to be disposed in an implantable device housing. An embodiment of the method includes providing a dielectric comprising aluminum oxide and doping the aluminum oxide with an oxide having a dielectric constant greater than aluminum oxide. Doping the aluminum oxide includes using sol-gel based chemistry, electrodeposition or atomic layer deposition (ALD) in various embodiments.
Abstract:
An example includes apparatus including a non-thin-film battery, that can include an implantable housing, electronics disposed in the implantable housing, and a battery disposed in the implantable housing, the battery comprising: a plurality of cells electrically connected to one another, with at least one cell including a stack including at least one substantially planar anode having a thickness greater than 1 micrometer and at least one substantially planar cathode having a thickness greater than 1 micrometer, and a cell housing enclosing the stack of substantially planar anodes and cathodes and displacing less than approximately 0.024 cubic centimeters, wherein the plurality of cells are interconnected in at least one of series and parallel, and terminals interconnecting the battery and the electronics.
Abstract:
Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
Abstract:
Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
Abstract:
Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
Abstract:
An example includes a capacitor case sealed to retain electrolyte, at least one anode disposed in the capacitor case, the at least one anode comprising a sintered portion disposed on a substrate, an anode conductor coupled to the substrate in electrical communication with the sintered portion, the anode conductor sealingly extending through the capacitor case to an anode terminal disposed on the exterior of the capacitor case with the anode terminal in electrical communication with the sintered portion, a second electrode disposed in the capacitor case, a separator disposed between the second electrode and the anode and a second electrode terminal disposed on an exterior of the capacitor case and in electrical communication with the second electrode, with the anode terminal and the second electrode terminal electrically isolated from one another.
Abstract:
This document provides an apparatus including a sintered electrode, a second electrode and a separator material arranged in a capacitive stack. A conductive interconnect couples the sintered electrode and the second electrode. Embodiments include a clip interconnect. In some embodiments, the interconnect includes a comb-shaped connector. In some embodiments, the interconnect includes a wire snaked between adjacent sintered substrates.