摘要:
A method of removing a spacer, a method of manufacturing a metal-oxide-semiconductor transistor device, and a metal-oxide-semiconductor transistor device, in which, before the spacer is removed, a protective layer is deposited on a spacer and on a material layer (such as a salicide layer) formed on the source/drain region and a gate electrode, such that the thickness of the protective layer on the spacer is smaller than the thickness on the material layer, and thereafter, the protective layer is partially removed such that the thickness of the protective layer on the spacer is approximately zero and a portion of the protective layer is remained on the material layer. Accordingly, when the spacer is removed, the material layer may be protected by the protective layer.
摘要:
First, a semiconductor substrate having a first active region and a second active region is provided. The first active region includes a first transistor and the second active region includes a second transistor. A first etching stop layer, a stress layer, and a second etching stop layer are disposed on the first transistor, the second transistor and the isolation structure. A first etching process is performed by using a patterned photoresist disposed on the first active region as a mask to remove the second etching stop layer and a portion of the stress layer from the second active region. The patterned photoresist is removed, and a second etching process is performed by using the second etching stop layer of the first active region as a mask to remove the remaining stress layer and a portion of the first etching stop layer from the second active region.
摘要:
A method of removing a spacer, a method of manufacturing a metal-oxide-semiconductor transistor device, and a metal-oxide-semiconductor transistor device, in which, before the spacer is removed, a protective layer is deposited on a spacer and on a material layer (such as a salicide layer) formed on the source/drain region and a gate electrode, such that the thickness of the protective layer on the spacer is smaller than the thickness on the material layer, and thereafter, the protective layer is partially removed such that the thickness of the protective layer on the spacer is approximately zero and a portion of the protective layer is remained on the material layer. Accordingly, when the spacer is removed, the material layer may be protected by the protective layer.
摘要:
First, a semiconductor substrate having a first active region and a second active region is provided. The first active region includes a first transistor and the second active region includes a second transistor. A first etching stop layer, a stress layer, and a second etching stop layer are disposed on the first transistor, the second transistor and the isolation structure. A first etching process is performed by using a patterned photoresist disposed on the first active region as a mask to remove the second etching stop layer and a portion of the stress layer from the second active region. The patterned photoresist is removed, and a second etching process is performed by using the second etching stop layer of the first active region as a mask to remove the remaining stress layer and a portion of the first etching stop layer from the second active region.
摘要:
First, a semiconductor substrate having a first active region and a second active region is provided. The first active region includes a first transistor and the second active region includes a second transistor. A first etching stop layer, a stress layer, and a second etching stop layer are disposed on the first transistor, the second transistor and the isolation structure. A first etching process is performed by using a patterned photoresist disposed on the first active region as a mask to remove the second etching stop layer and a portion of the stress layer from the second active region. The patterned photoresist is removed, and a second etching process is performed by using the second etching stop layer of the first active region as a mask to remove the remaining stress layer and a portion of the first etching stop layer from the second active region.
摘要:
A CMOS device is provided, comprising a substrate, a first-type MOS transistor, a second-type MOS transistor, a first stress layer, a first liner layer, and a second stress layer. The substrate has a first active area and a second active area, which are separated by an isolation structure. Further, the first-type MOS transistor is disposed on the first active area of the substrate, and the second-type MOS transistor is disposed on the second active area of the substrate. The first stress layer is compliantly disposed on the first-type MOS transistor of the first active area. The first liner layer is compliantly disposed on the first stress layer. The second stress layer is compliantly disposed on the second-type MOS transistor of the second active area.
摘要:
A semiconductor device comprises a metal gate electrode, a passive device and a hard mask layer. The passive device has a poly-silicon element layer. The hard mask layer is disposed on the metal gate electrode and the passive electrode and has a first opening and a second opening substantially coplanar with each other, wherein the metal gate electrode and the poly-silicon element layer are respectively exposed via the first opening and the second opening; and there is a distance between the first opening and the metal gate electrode substantially less than the distance between the second opening and the poly-silicon element layer.
摘要:
A semiconductor device comprises a metal gate electrode, a passive device and a hard mask layer. The passive device has a poly-silicon element layer. The hard mask layer is disposed on the metal gate electrode and the passive electrode and has a first opening and a second opening substantially coplanar with each other, wherein the metal gate electrode and the poly-silicon element layer are respectively exposed via the first opening and the second opening; and there is a distance between the first opening and the metal gate electrode substantially less than the distance between the second opening and the poly-silicon element layer.
摘要:
A method of removing a spacer, a method of manufacturing a metal-oxide-semiconductor transistor device, and a metal-oxide-semiconductor transistor device, in which, before the spacer is removed, a protective layer is deposited on a spacer and on a material layer (such as a salicide layer) formed on the source/drain region and a gate electrode, such that the thickness of the protective layer on the spacer is smaller than the thickness on the material layer, and thereafter, the protective layer is partially removed such that the thickness of the protective layer on the spacer is approximately zero and a portion of the protective layer is remained on the material layer. Accordingly, when the spacer is removed, the material layer may be protected by the protective layer.
摘要:
A method of removing a spacer, a method of manufacturing a metal-oxide-semiconductor transistor device, and a metal-oxide-semiconductor transistor device, in which, before the spacer is removed, a protective layer is deposited on a spacer and on a material layer (such as a salicide layer) formed on the source/drain region and a gate electrode, such that the thickness of the protective layer on the spacer is smaller than the thickness on the material layer, and thereafter, the protective layer is partially removed such that the thickness of the protective layer on the spacer is approximately zero and a portion of the protective layer is remained on the material layer. Accordingly, when the spacer is removed, the material layer may be protected by the protective layer.