Abstract:
To reduce errors introduced by a scanner, an unmarked, digital master document may be generated and stored in digital form so that subsequent scanning of the document is unnecessary to place it in digital form for comparison to a marked version of the document. Additionally, regions or fields, rather than the entire digital master document, may be individually created, stored, and subsequently used for comparison to corresponding portions of a marked version. Further, test targets or patterns may be inserted into the content of a digital master document. Characteristics of image quality degeneration and distortion can be extracted from printed versions of the test targets or patterns and used to effect closed loop control to digitally reduce image quality degeneration caused by the scanner.
Abstract:
A scan module including an image sensor defining a scan field, at least one lamp positioned to illuminate at least a portion of the scan field, and a second light source positioned to provide illumination for the portion of the scan field.
Abstract:
A scanner calibration strip medium is described which includes at least one of a plurality of text symbols and a plurality of halftoned non-text images. A scanner is described which includes a scan bar and a scanner calibration strip medium scannable by the scan bar. The calibration strip medium includes a plurality of text symbols having text pixels and a plurality of halftoned non-text images having halftoned non-text pixels. A method for segmenting a scanned document image into text symbols and halftoned non-text images is described which uses a scanner calibration strip medium which includes a plurality of text symbols having text pixels and a plurality of halftoned non-text symbols having halftoned non-text pixels, wherein the calibration strip medium has a known pixel classification including which pixels of the calibration strip medium are text pixels and which pixels of the calibration strip medium are halftoned non-text pixels.
Abstract:
A method for adjusting a controller of a scanner includes obtaining a scan of a predefined image. The method further includes moving the sensor-element signals of the control signal pattern generated by the controller earlier in the pattern by at least one unit and obtaining an additional scan. The obtaining and moving are repeated until a comparison of a latest additional scan to the image is worse than a comparison of a second-latest additional scan to the image. Another method obtains a noise-reducing heuristic which modifies a time parameter of a sensor-element signal. A set of repeated scans of a same scan line is obtained, noise is measured there from, the time parameter is modified by one predetermined unit, and the process repeats until the noise measured from the latest set of repeated scans is worse than that from the second-latest set of repeated scans.
Abstract:
A method is provided for compensating two-dimensional images for non-uniformity variations in the illumination of a document, or a scene, that is acquired by a digital camera. The invention can include a printer and/or a personal computer to perform some or all of the compensation calculations, if desired. The present invention captures initial image data, determines a region or area of that data having substantially, or somewhat, uniform pixel intensities and uses that as a background or border region. This border data is used to calculate correction data to correct or compensate the non-border pixel values for non-uniformities in the illumination of the image when it was first acquired, without needing a separate reference frame.
Abstract:
Methods of identifying the location and dimensions of a contaminant particle on a calibration strip may be used to compensate for contaminant particles on a calibration strip. A method of locating a contaminant particle on a calibration strip comprises imaging a calibration strip comprising a plurality of channels arranged in rows and a plurality of pixel columns, wherein each channel comprises a plurality of horizontally adjacent pixels, and each pixel column comprises pixels from a plurality of channels. The method also includes generating an average pixel intensity value by normalizing the channels and locating a contaminant particle in a pixel column by comparing the intensity of an individual pixel in the pixel column to the average pixel intensity value. An intensity value of an individual pixel less than a predefined limit set below the normalized local average pixel intensity value corresponds to a location of a contaminant particle. The method further includes identifying the number of adjacent pixels in a pixel column less than a predefined limit set below the normalized local average pixel intensity value.
Abstract:
A gamut mapping algorithm especially adapted for printing business and presentation graphics with highly chromatic colors. To perform gamut mapping, gamut triangles corresponding to an input gamut and output gamut are defined and used to scale the lightness and chroma of input colors. The rescaled input colors are then mapped to the output triangle along lines of constant chroma. The chroma of the remapped colors is enhanced by moving the remapped colors toward the apex of the output gamut triangle along a line passing through the remapped color and the apex of the output gamut triangle.
Abstract:
An illumination assembly for a scanner comprising a light source, a primary reflector and a secondary reflector. The primary reflector comprises a lower member and upper member spaced away from the lower member. The upper member has a heatsink for dissipating the heat of the light source. The light source is positioned between the lower and upper members and is attached to the upper member allowing for decreased vertical height for the illumination assembly.
Abstract:
An illumination assembly for a scanner according to one example embodiment includes a scan head frame. A thermally conductive heat sink component has an elongated base portion that is mounted along a longitudinal edge of the scan head frame and a protruding portion having a generally L-shaped structure that includes a first portion extending from the base portion and a second portion extending from and generally orthogonal to the first portion. A light source is coupled to the second portion of the protruding portion of the heat sink component. A first reflector is removably coupled to the first portion of the protruding portion of the heat sink component and is positioned directly in the optical path of the light source.
Abstract:
A tubular structure with an opening defined thereon and having an inner surface and an outer surface. The tubular structure being substantially circular in shape and is made of a highly thermal conductive material. A plurality of light sources mounted on the inner surface of the tubular structure. The inner surface is coated with a diffused white coating. Light emitted from the plurality of light sources is reflected from the inner surface before exiting the tubular structure from the opening. This structure ensures emitting a uniform diffused light and prevents non-uniform illumination when disposed in an imaging forming device.