Abstract:
A speed reducing device includes a motor and a speed reducing mechanism. The motor includes a stator portion, a shaft portion and rotator portion. The rotator portion includes first and second eccentric rings. The speed reducing mechanism includes first, second and third roller assemblies and first and second cycloid disc sets. These roller assemblies include first rollers, second rollers and third rollers. The first cycloid disc set is mounted around the first eccentric ring, and includes first teeth and second teeth. The second cycloid disc set is mounted around the second eccentric ring, and includes third teeth and fourth teeth. The first teeth are contacted with the first rollers. The third teeth are contacted with the second rollers. The second teeth and the fourth teeth are contacted with the third rollers.
Abstract:
A moving-magnet transfer platform includes a mover part, a driving part and a stator part. The mover part includes a moving table and a magnet assembly. The stator part includes plural coils, plural switch elements, a current sensor, an electric angle detector, plural magnetic field sensors and a signal processor. The plural switch elements are connected between the driving part and the corresponding coils. When the magnet assembly is moved to a position of the corresponding coil, a magnetic field change is detected by the corresponding magnetic field sensor. The signal processor is used for controlling operations of the plural switch elements. When the magnet assembly is moved to the position of the corresponding coil, the corresponding switch element is turned on under control of the signal processor, so that the moving table is moved with the magnet assembly.
Abstract:
A linear motor includes a case, a magnet assembly and a coil assembly. The case is disposed along a first direction. The magnet assembly includes at least two first magnets, among which the first magnets are disposed corresponding to and between two first magnetic yokes, respectively. The coil assembly includes a winding coil having an exposed portion, among which the exposed portion is extended along a second direction and disposed between the two first magnetic yokes, and the exposed portion is at least partially overlapped with the two first magnets in a third direction. As a result, the coil assembly and the case are driven to reciprocate along the first direction by the winding coil due to the magnetic force, thereby solving the magnetic disturbing issue, enhancing the driving force of the linear motor, and optimizing the mechanical rigidity.
Abstract:
A plastic product manufacturing method includes (a) providing a cloud server which stores a machine number and machine parameters of an all-electric injection-molding machine that includes a controller; (b) downloading the machine parameters from the cloud server according to the machine number; (c) executing mold flow analysis software to generate model data and optimal injection conditions of a mold according to the machine parameters; (d) setting a mold number and a password to the model data and the optimal injection conditions and then storing the same in the cloud server after packaging; (e) connecting to the cloud server using the machine number, the mold number, and the password by the controller; (f) downloading the optimal injection conditions to the controller after the cloud server confirms the machine number, the mold number, and the password; and (g) driving the all-electric injection-molding machine by the controller according to the optimal injection conditions.
Abstract:
A robot joint utilized in a robot arm is disclosed. The robot joint includes a hollow shaft, a first gear, plural motors, plural second gears, an encoder, and a digital signal processor. The first gear is fixed on the hollow shaft. The motors are arranged surrounding the hollow shaft. Each of the motors has a rotating shaft. The second gears are fixed on the rotating shaft and are engaged with the first gear, so that the hollow shaft can be rotated with the second gears driven by the motors. The encoder is disposed at a side of one of the motors opposite to the second gears. The signal detected by the encoder is sent to the digital signal processor for driving the motors. A robot arm using the robot joint is also disclosed.