摘要:
A method and an apparatus for adaptive data rate selection in a high data rate (HDR) communication system are disclosed. An exemplary HDR communication system defines a set of data rates, at which an access point (AP) may transmit data packets to an access terminal (AT). The transmission data rate is selected to maintain target packet error rate (PER). Each AT monitors signal quality metric of signals received from APs. An AT receiving forward link signals from multiple ATs identifies the AT associated with the highest quality forward link signal. The AT then evaluates the rate at which a tail probability of error is greater than or equal to a target tail probability of error. The AT then generates a prediction of a first data rate at which the PER of packets received from the identified AP will not exceed the target PER, and a prediction of a second data rate at which the PER of packets received from the selected AP will exceed the target PER. The AT uses the values of the first and second data rates to predict probabilities of selecting the first and the second data rates such that a throughput of the HDR system is maximized and the target PER is achieved. The predicted probabilities are then utilized as biases for a method identifying whether the first data rate or the second data rate will be requested from the AP. The disclosed method and apparatus may be extended to the full set of available data rates.
摘要:
Apparatus for iterative decoding of a sequence of signal packets coded in accordance with a multi-component coding scheme. The apparatus includes a plurality of decoders, each of which performs a respective different decoding method on one of the signal packets, such that the plurality of decoders operate substantially concurrently.
摘要:
A system for providing an accurate interference value signal received over a channel and transmitted by an external transceiver. The system includes a first receiver section for receiving the signal, which has a desired signal component and an interference component. A signal extracting circuit extracts an estimate of the desired signal component from the received signal. A noise estimation circuit provides the accurate interference value based on the estimate of the desired signal component and the received signal. A look-up table transforms the accurate noise and/or interference value to a normalization factor. A carrier signal-to interference ratio circuit employs the normalization factor and the received signal to compute an accurate carrier signal-to-interference ratio estimate. Path-combining circuitry generates optimal path-combining weights based on the received signal and the normalization factor. In the illustrative embodiment, the system further includes a circuit for employing the accurate interference value to compute a carrier signal-to-interference ratio. An optimal path-combining circuit computes optimal path-combining weights for multiple signal paths comprising the signal using the accurate interference value and provides optimally combined signal paths in response thereto. A log-likelihood ratio circuit computes a log-likelihood value based on the carrier signal-to-interference ratio and the optimally combined signal paths. A decoder decodes the received signal using the log-likelihood value. An additional circuit generates a rate and/or power control message and transmits the rate and/or power control message to the external transceiver.
摘要:
A method and apparatus for controlling a data rate associated with the transmission of information from a base station to a mobile station in a mobile radio communication system. The mobile station alternately receives information from a base station either in a variable rate mode or a fixed rate mode. The transmission rate from a base station in the variable rate mode varies between successive data transmit intervals, and the transmission rate from a base station in the fixed rate mode remains fixed between successive data transmit intervals. Data is transmitted from a first base station to the mobile station in the variable rate mode until the first base station is unable to receive variable data rate control information from the mobile station.
摘要:
A method for assigning optimal packet lengths in a variable rate communication system capable of data transmission at one of a plurality of data rates. The packet lengths for the data rates are selected such that the maximum throughput rate is achieved while conforming to a fairness criteria. The fairness criteria can be achieved by restricting the packet length assigned to each data rate to a range of value, or L.sub.i.sup.min .ltoreq.L.sub.i .ltoreq.L.sub.i.sup.max. The packet lengths for all data rates are first initialized to the maximum packet lengths for those data rates. Then, for each data rate, a determination is made whether another packet length assignment would result in improved throughput rate. If the answer is yes, the packet length for this data rate is reassigned and the throughput rate with the updated packet length assignments is recomputed. The process is repeated for each data rate until all data rates have been considered. The throughput rate can be calculated using a probabilistic model or a deterministic model.
摘要:
A soft decision output decoder and decoding method. The decoder decodes a sequence of signals output by an encoder and transmitted over a channel. The soft decision output decoder includes a first "generalized" Viterbi decoder for decoding the sequence of signals received over the channel during a forward iteration through a trellis representing the encoder output having a block length T. The first "generalized" Viterbi decoder begins at an initial state t.sub.0 and provides a plurality of forward iteration state metrics .alpha. for each state at each time interval over a window of length 2L, where L is on the order of a few constraint lengths and 2L is less than a block length T. A second "generalized" Viterbi decoder decodes the sequence of signals received over the channel during a backward iteration through the trellis. The second decoder starts at a second time t2L and provides a plurality of backward iteration state metrics .beta. for each state at each time interval. A processor then performs a dual maxima computation at each state using the forward state metric, the backward state metric and the branch metric for same to provide a measure of the likelihood that a particular sequence of data was transmitted by the encoder. The processor computes a log of the likelihood ratio using the forward and backward state metrics and the branch metrics for a selected state. This is achieved by first computing a max function as an approximation of the measure of the likelihood that a particular sequence of data was transmitted by the encoder. By performing forward and backward Viterbi decoding with dual maxima computations at each node within a window moved over the trellis, the inventive decoder provides the performance benefits associated with a LOG-MAP decoder while avoiding the excessive memory requirements of same.
摘要:
In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
摘要:
In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
摘要:
In a data communication system capable of variable rate transmission, high rate packet data transmission improves utilization of the forward link and decreases the transmission delay. Data transmission on the forward link is time multiplexed and the base station transmits at the highest data rate supported by the forward link at each time slot to one mobile station. The data rate is determined by the largest C/I measurement of the forward link signals as measured at the mobile station. Upon determination of a data packet received in error, the mobile station transmits a NACK message back to the base station. The NACK message results in retransmission of the data packet received in error. The data packets can be transmitted out of sequence by the use of sequence number to identify each data unit within the data packets.
摘要:
A method and an apparatus for quick retransmission of signals in a communication system are disclosed. A transmitting terminal, e.g., a base station, transmits signals in a form of packets to a receiving terminal, e.g., a subscriber station. The receiving terminal determines if the packet was intended for the receiving terminal, and if so, the receiving terminal demodulates the packet. The receiving terminal then computes a quality metric of the packet, and compares the computed quality metric with a quality metric contained in the packet. If the quality metrics match, the packet is declared correctly received, and is forwarded for further processing. If the quality metrics fail to match, the receiving terminal sends a request for retransmission of the packet. The transmitting terminal determines which packet needs to be retransmitted based on the request for retransmission. The transmitting terminal then schedules the packet for retransmission.