Abstract:
Methods and apparatus for processing received OFDM signals to compensate for distortions caused by IQ imbalances are disclosed. Receiver circuits may be configured to demodulate symbols from a first logical channel, using an uncompensated received OFDM signal that includes the effects of those distortions. Receiver circuits may be further configured to calculate an IQ imbalance parameter, using the demodulated symbols, for use in compensating the received OFDM signal to reduce the effects of the IQ imbalances. The compensated signal produced thereby may be used for demodulating symbols from a second logical channel, perhaps corresponding to a user data channel.
Abstract:
A wireless communication device corrects data transmission errors caused by the simultaneous transmission of multiple streams of data in a Multiple-Input Multiple-Output (MIMO) network. The wireless communication device corrects data transmission errors by removing the signal contribution associated with one or more received signal components from a corresponding received composite signal, thus allowing the remaining components to be decoded relatively free from the signal contribution of the removed components. In one embodiment, the wireless communication device comprises a plurality of antennas and a baseband processor. The antennas are configured to receive a composite signal having a plurality of received signal components. The baseband processor is configured to obtain decoding quality metrics for individual ones of the received signal components, form regenerated received signal components for the received signal components having satisfactory decoding quality metrics, and remove the regenerated received signal components from the received composite signal.
Abstract:
An automatic frequency control (AFC) system in an electronic device is operated by using an AFC-algorithm component to determine a frequency error corresponding to a difference between a frequency of a signal output from a signal generator and a received signal frequency. The frequency error determined by the AFC-algorithm component is multiplied by a scaling factor, which is set to zero after an adjustment has been made to change a frequency of the signal output from the signal generator. The scaling factor is increased from zero to one over time. The scaled frequency error is used to determine whether to adjust the frequency of the signal output from the signal generator.
Abstract:
Cells from which to receive information transmitted on a traffic channel that is not subject to power control in a cellular radio communications system are selected. Selection involves, for each of a plurality of candidate cells, using an offset value that indicates a relationship between a pilot channel transmission power and the traffic channel transmission power associated with the candidate cell to determine a value of quality indicative of power of a signal transmitted on the traffic channel associated with the candidate cell; and selecting, based on the values of quality indicative of power of a signal transmitted on the traffic channel, a number, N, of cells from the plurality of candidate cells.
Abstract:
Coded digital data symbols sent from a transmitter through a transmission channel of a communications network are received in a receiver. An estimate, represented by a first number of bits, of a sent data symbol is calculated, and a second number of bits, lower than the first number, is selected from the estimate to achieve a rounded estimate represented by the second number of bits. The rounded estimate is decoded to achieve a decoded data symbol. A target value for a block error rate of the transmission channel is received from the network; and the second number of bits is selected in dependence on the target block error rate value. Thus an optimal rounded estimate is provided in most situations, and the method can be performed with the limited computational resources of a terminal.
Abstract:
A receiver and method for receiving and processing a sequence of transmitted symbols in a digital communication system utilizing soft pilot symbols. A set of soft pilot symbols are transmitted with higher reliability than the remaining symbols in the sequence by modulating the soft pilot symbols with a lower order modulation such as BPSK or QPSK while modulating the remaining symbols with a higher order modulation such as 16 QAM or 64 QAM. The receiver knows the modulation type and location (time/frequency/code) of the soft pilot symbols, and demodulates them first. The receiver uses the demodulated soft pilot symbols as known symbols to estimate parameters of the received radio signal. Unlike traditional fixed pilots, the soft pilots still carry some data. Additionally, the soft pilots are particularly helpful in establishing the amplitude reference essential in demodulating the higher order modulation symbols.
Abstract:
A multi-carrier linear equalization receiver, e.g., a RAKE receiver or chip equalization receiver, is described herein. The multi-carrier receiver distributes processing delays among a plurality of received carriers based on a dispersion determined for each carrier. The receiver initially allocates a minimum number of processing delays sufficient for light dispersion to each carrier. For the dispersive carriers, the receiver allocates one or more additional processing delays. In one embodiment, the additional processing delays are allocated to the dispersive carriers based on SIR.
Abstract:
The present invention includes a method and apparatus for autonomously determining by a first UE the identities (IDs) of one or more other UEs that are operating in or around the same network area as the first UE. More particularly, the first UE determines with a defined reliability the UE ID of an otherwise unknown UE based on receiving and processing an HS-SCCH transmission targeted to the unknown UE. By learning actual UE IDs for one or more other UEs operating in or around the same area as the first UE, the first UE can then properly decode HS-SCCH transmissions to those other UEs, and thereby gain knowledge of the signal structures used for data (HS-PDCH) transmissions to those other UEs. Advantageously, the first UE applies such knowledge in its desired-signal receiver processing, such as for enhancing channel estimation and/or performing structured-signal interference cancellation.
Abstract:
A multi-carrier linear equalization receiver, e.g., a RAKE receiver or chip equalization receiver, is described herein. The multi-carrier receiver distributes processing delays among a plurality of received carriers based on a comparison between the signal-to-interference ratios (SIRs) determined for each carrier. The receiver initially allocates a minimum number of processing delays to each carrier. In one embodiment, any remaining additional processing delays are distributed evenly between the carriers when a comparison between the largest and smallest SIR is less than or equal to a threshold. In another embodiment, the remaining additional processing delays are distributed to favor the carrier(s) with the strongest SIR(s) when the comparison between the largest and smallest SIR exceeds the threshold. By distributing the additional processing delays to favor the carriers with the strongest SIRs, the embodiments of the present invention enable system designers to limit the total number of available processing delays without sacrificing performance.
Abstract:
The teachings herein disclose methods and apparatus that simplify impairment correlation estimation for received signal processing, based on determining, for any given processing interval, which impairment contributors should be considered in the estimation of overall received signal impairment correlations. These simplifications reduce computational processing requirements, allowing reduced circuit complexity and/or reduced operating power, and improve receiver performance. A corresponding transmitter and transmission method include transmitting multiple information streams to targeted receivers according to ongoing scheduling, and controlling the ongoing scheduling to reduce the number of impairment contributors considered in impairment correlation estimation at the targeted receivers. In one embodiment, a receiver identifies which impairment contributors to consider based on receiving control information. In another embodiment, the receiver identifies the impairment contributors to consider based on background processing, e.g., background determination of parametric model fitting parameters for a plurality of impairment contributors, and observing those model fitting parameters over time.