Abstract:
Fluorophores or other indicators can be used to label and identify one or more defects in a graphene layer by localizing at the one or more defects and not at other areas of the graphene layer. A substrate having a surface at least partially covered by the graphene layer may be contacted with the fluorophore such that the fluorophore selectively binds with one or more areas of the surface of the underlying substrate exposed by the one or more defects. The one or more defects can be identified by exposing the substrate to radiation. A detected fluorescence response of the fluorophore to the radiation identifies the one or more defects.
Abstract:
Technologies are generally described to form a waveguide in a polymer multilayer comprising a first and second polymer layer. The waveguide may be formed by directing light beams toward the polymer multilayer to form first and second cladding regions in the polymer multilayer, where the first and second cladding regions comprise a mixture of the first and second polymer layers. The first and second cladding regions may define a third cladding region and a waveguide core therebetween, where the third cladding region comprises a portion of the second polymer layer, and the waveguide core comprises a portion of the first polymer layer. In some examples, the polymer multilayer may be formed on a substrate such that the waveguide is formed on the substrate. Additionally, the waveguide may be formed temporarily to test components of an optoelectronic system and then erased by heating the polymer multilayer to destroy the waveguide core, or the waveguide may be formed as a default optical interconnection configuration that may be changed to alter the functional mode of the backplane in the manner of a jumper setting.
Abstract:
The present disclosure relates to controlling the release of growth factors for the promotion of angiogenesis. The growth factors or a polymer matrix are modified by photoactive compounds, such that the growth factors are not released into an active form until they are irradiated with light. The disclosure also relates to tissue engineering scaffolds comprising one or more polymers and at least two growth factors.