Abstract:
A method of thermal imaging is provided which comprises heating imagewise a layer of a colored di- or triarylmethane compound possessing within its di- or triarylmethane structure an aryl group substituted in the ortho-position to the meso carbon atom with a group comprising a thermally unstable urea moiety which fragments upon heating to provide a new group that bonds to the meso carbon atom whereby the di- or triarylmethane compound is rendered ring-closed and colorless in an imagewise pattern corresponding to said imagewise heating.
Abstract:
A thermal imaging method for forming color images is provided which relies upon the irreversible unimolecular fragmentation of one or more thermally unstable carbamate moieties of an organic compound to effect a visually discernible color shift from colorless to colored, from colored to colorless or from one color to another.
Abstract:
Lithographic printing is performed with printing members having a hydrophilic-surfaced metal support and a polymeric layer thereover. The polymeric layer absorbs imaging radiation and is soluble in a liquid to which ink will not adhere (e.g., fountain solution). Ordinarily, the polymeric layer is mostly removable by fountain solution. In response to absorbed imaging radiation, however, it may become permanently bound to the metal support so as to resist removal, serving as an ink-carrying oleophilic layer during printing.
Abstract:
Lithographic printing members have protective layers formulated specifically for use with single-fluid inks, and which are removed from the printing member during the preparatory procedures that precede printing. The protective layer provides protection against handling and environmental damage, and also extends plate shelf life; performs a cleaning function, entraining debris and carrying it away as the layer itself is removed; acts as a debris-management barrier if the layer immediately beneath the protective layer is ablated during the imaging process, preventing the emergence of airborne debris that might interfere with unimaged areas and/or imaging optics; and exhibits hydrophilicity, actually accelerating plate roll-up.
Abstract:
Lithographic printing members have inorganic protective layers that may be applied by vacuum deposition. In a representative construction, a substrate and a first layer thereover have different affinities for ink and/or a liquid to which ink will not adhere; the first layer may, for example, be applied under vacuum and comprise a metal or a metallic inorganic layer. Onto this layer is deposited a material comprising, for example, a boron ceramic, and under conditions ensuring that oxygen is present at least at the interface between the boron ceramic and the first layer. The first layer may incorporate a surface layer of oxygen or may be an oxygen compound. The oxygen facilitates hydrolysis of the boron ceramic during the print "make-ready" process.
Abstract:
Lithographic printing constructions are removable from a permanent support, which may be a metal sheet affixable (usually by clamps) to a plate cylinder, or may instead be the permanent surface of such a cylinder. In this way, the traditional "plate" is replaced with a thin, easily manufactured printing member, which is separated from the support following its use.
Abstract:
The lithographic affinity characteristics of a material, such as a polymer, are affected--and thereby selectively modulated--through implantation of one or more metallic materials, typically in the form of ions and/or atoms (or molecules). The desired characteristics are achieved by bulk chemical modification of the material rather than by texturing or deposition of a new surface layer. In the case of a polymer system, for example, the metal impregnates the matrix, penetrating to an observable depth without substantial surface accumulation.
Abstract:
An image media assembly comprising: a donor element, a receptor element, and means for maintaining at least the elements in a predetermined position wherein one element overlies the element, said means including a vacuum present between the elements.
Abstract:
Unique laser ablation transfer ("LAT") imaging films presenting options of flexibility and versatility hitherto alien to this art are produced, on-demand, by toning appropriate substrate as to provide thereon an ablative discontinuous film topcoat comprising a contrast imaging amount of conventional or modified toner particulates.
Abstract:
A heat responsive recording element having a recording layer containing a colorless di- or tri-aryl methane compound having a closed ring moiety incorporating the meso carbon atom and containing a nitrogen atom directly bonded to the meso carbon. The nitrogen atom is also bonded to a heterocyclic or carbocyclic ring substituted with an alkylating group. Upon heating the recording layer imagewise the alkylating group effects intramolecular alkylation of the nitrogen atom with irreversible breaking of the meso carbon atom-nitrogen atom bond rendering the compound colored in the imagewise heating pattern.