Abstract:
A laser machining head includes a protection window disposed inclined with respect to an optical axis of a laser beam, an inflow port disposed downstream of the protection window and configured to allow a gas to flow in, and a flow dividing projection configured to divide the gas into a first laminar flow flowing along parallel to a surface of the protection window and a second laminar flow flowing toward a workpiece. The flow dividing projection is disposed in a position opposing to the inflow port with the optical axis of the laser beam as the center.
Abstract:
A laser machining head has a function of rectifying an assist gas and includes a protection window, a nozzle configured to blow the assist gas over a workpiece, a chamber defining a space between the protection window and the nozzle, an inflow port disposed in a chamber and configured to allow the assist gas to flow in, and a flow dividing projection disposed at a position opposing to the inflow port and configured to divide the assist gas from the inflow port into a first flow and a second flow flowing along a circumferential direction around an optical axis of a laser beam.
Abstract:
A laser processing device includes a beam splitter disposed between a focusing lens and a protective window, a return light measurement unit configured to measure intensity distribution of a return light reflected from a workpiece and returning to an external optical system via the beam splitter, a storage unit configured to store at least one of normal pattern data representing the intensity distribution of the return light when the protective window is in normal condition and abnormal pattern data representing the intensity distribution of the return light when the protective window is contaminated, a processing unit configured to perform a process of detecting contamination of the protective window during laser processing based on measurement data about the return light and at least one of the normal pattern data and the abnormal pattern data, and a warning unit configured to warn of contamination of the protective window in accordance with the process.
Abstract:
A laser machining device includes a first focus movement amount calculation section configured to calculate a focus movement amount based on comparison of a first measurement value obtained by averaging a plurality of measurement values measured by a returning light measurement unit within a first period and a second measurement value obtained by averaging a plurality of measurement values measured by the returning light measurement unit within a second period that is temporally later than the first period; and a focus position correction section configured to correct a focus position during laser machining based on the focus movement amount, and the first period is a period shortly after initiation of laser emission when the external optical system is not warmed up or is a period after correcting the focus position, and the second period is a period after passage of a certain time duration when the external optical system is warmed up.
Abstract:
A laser processing device has a preprocessing controller which issues a command to perform preprocessing of a workpiece under high output conditions, which are previously found by an experiment or calculation in accordance with at least some of processing conditions and which include the irradiation intensity and irradiation time, at which a workpiece is melted, changed in shape, or denatured; a command to irradiate the workpiece with a laser beam under low output conditions, which are previously found by an experiment or calculation in accordance with at least some of the processing conditions and which include the irradiation intensity and irradiation time, at which a workpiece is not melted, changed in shape, or denatured; and a command of whether to start the laser processing, based on a first light quantity of light reflected or emitted from a processing point irradiated with a laser beam under the low output conditions.
Abstract:
An optical fiber connection unit able to efficiently remove heat generated in the optical fiber connection unit. The optical fiber connection unit includes a closed circulation path, through which coolant for eliminating heat generated in the optical fiber connection unit by a laser beam propagating through the optical fiber connection unit circulates, and a coolant circulation device for causing the coolant to flow and circulate in the circulation path.
Abstract:
A beam profiler which can determine whether or not a laser beam can be suitably output at a lower cost. The beam profiler is provided with a partial reflecting mirror, light receiving parts, and laser intensity sensors which are individually attached to the light receiving parts. The light receiving parts include a first light receiving part which receives a first region which includes an optical axis of the laser beam in a laser irradiation region of the laser beam and a second light receiving part which is insulated heat-wise from the first light receiving part and which receives a second region of a laser irradiation region which is different from the first region.
Abstract:
A laser processing device having a simple structure and a means for accurately detecting expansion and misalignment of a laser beam. A sensor, which receives the laser beam after transmitting through a half mirror, is arranged on a back surface of the half mirror opposed to a front surface which reflects the laser beam. The sensor is positioned via a heat insulating material between the back surface of the half mirror and a shield plate for shielding or absorbing the laser beam after transmitting through the half mirror, so that the sensor is thermally-independent from the other components. The sensor is positioned so that the sensor does not receive the laser beam after transmitting through the half mirror in the normal state, and so that the sensor directly receives the laser beam after transmitting through the half mirror when the laser beam is expanded or misaligned.
Abstract:
A laser machining device includes a first focus movement amount calculation section configured to calculate a focus movement amount based on comparison of a first measurement value obtained by averaging a plurality of measurement values measured by a returning light measurement unit within a first period and a second measurement value obtained by averaging a plurality of measurement values measured by the returning light measurement unit within a second period that is temporally later than the first period; and a focus position correction section configured to correct a focus position during laser machining based on the focus movement amount, and the first period is a period shortly after initiation of laser emission when the external optical system is not warmed up or is a period after correcting the focus position, and the second period is a period after passage of a certain time duration when the external optical system is warmed up.
Abstract:
A laser processing system that can effectively blow out a material of a workpiece melted by a laser beam by effectively utilizing an assist gas emitted from a nozzle. The laser processing system comprises a nozzle including an emission opening configured to emit a jet of an assist gas along an optical axis of a laser beam, the nozzle being configured to form a maximum point of velocity of the jet at a position away from the emission opening; and a tubular enclosure disposed between the nozzle and a workpiece and enclosing the jet, wherein the enclosure has a changeable radial inner dimension, and is configured to adjust the position of the maximum point by changing the inner dimension.