Abstract:
A downhole fluid analysis system comprises an input light signal that is directed through a fluid sample housed in a sample cell. The input light signal may originate from a plurality of light sources. A light signal output from the sample cell is then routed to two or more spectrometers for measurement of the represented wavelengths in the output light signal. The output of the spectrometers is then compared to known values for hydrocarbons typically encountered downhole. This provides insight into the composition of the sample fluid. Additionally, the input light can be routed directly to the two or more spectrometers to be used in calibration of the system in the high temperature and noise environment downhole.
Abstract:
An apparatus for performing real-time analysis of a subterranean formation fluid includes a light source configured to transmit at least a sample signal through a sample of the subterranean formation fluid and a reference signal, at least one photodetector configured to continuously detect the sample and reference signals, and an electronics assembly configured to compensate for drift in the detected sample signal in real-time based on the value of the detected reference signal.
Abstract:
The oscillation frequency of a fluid jet in a fluidic oscillator is measured using a temperature sensor. The resistance of the temperature sensor varies as a function of the oscillation of frequency f0 of the jet. The method consists in feeding the temperature sensor with an AC voltage of frequency f, and then in determining the frequency components around the frequency 3×f in the output signal from the temperature sensor in order to determine the oscillation frequency f0 of the jet. The frequency components in the signal output by the temperature sensor are determined by measuring the measurement signal across the terminals of the temperature sensor, then by synchronously demodulating the measurement signal at the frequency 3×f, and finally by determining the frequency of the demodulated measurement signal, which frequency corresponds to the oscillation frequency f0 of the jet.