Abstract:
Disclosed is a video processor for a magnifier camera. In particular, the disclosure relates to a video processor that eliminates the use of a frame buffer. This, in turn, reduces the latency otherwise present in the video signal. The disclosed video processor also allows selected portions of the display to be shaded. This highlights the non-shaded portions of the display while at the same time allowing the entire object to be perceived by the user.
Abstract:
Disclosed is a magnifier for use by blind or low vision users. The magnifier includes a camera, such as a CMOS image sensor, that displays enlarged images upon a screen for easy viewing. The magnifier further includes a handle that is pivotally interconnected to a housing to allow for handheld use in a variety of different configurations.
Abstract:
Disclosed is a portable magnifier camera with both storage and deployed configurations. In the storage configuration, the entire assembly can be carried via an associated handle. The camera is designed to rest on a desktop, or other planar surface, in the deployed configuration. When deployed, a housing and camera arm are positioned in a cantilevered arrangement over top of an object to be viewed. A camera housing, with an associated camera, is pivotally connected to the camera arm and is positioned over the object upon the camera being placed into a deployed configuration.
Abstract:
Disclosed is a tablet with an improved Braille display. The Braille display employs a pin array that allows for the selective use of either six or eight pin cells. This is accomplished by turning off or on a pin pair adjacent to each cell. The spacing of the pins also allows capacitive sensors to be located adjacent to each Braille cell. These sensors are used to determine the location of the user's finger upon the display. The pin spacing further allows geometric shapes to be generated in additional to text.
Abstract:
Disclosed is a braille display that is impact resistant and that employs a modular construction. The impact resistance is achieved, in part, by molded and resilient end caps. Each end cap includes a centrally positioned slit that functions in absorbing lateral impacts to the display. The impact resistance is further achieved by an over molded housing that is positioned about an associated USB connector. The modularity of the display is achieved by way of a subassembly that is releasably secured within the interior of a main housing. The subassembly, in turn, includes a series of cell compartments that are arranged in groups. Each group of cell compartments is controlled by an individual shift register. This allows a grouping cell compartments to be removed and replaced as needed without disturbing the remaining cell components.
Abstract:
Disclosed is a braille display that is impact resistant and that employs a modular construction. The impact resistance is achieved, in part, by molded and resilient end caps. Each end cap includes a centrally positioned slit that functions in absorbing lateral impacts to the display. The impact resistance is further achieved by an over molded housing that is positioned about an associated USB connector. The modularity of the display is achieved by way of a subassembly that is releasably secured within the interior of a main housing. The subassembly, in turn, includes a series of cell compartments that are arranged in groups. Each group of cell compartments is controlled by an individual shift register. This allows a grouping cell compartments to be removed and replaced as needed without disturbing the remaining cell components.
Abstract:
Disclosed is a magnification device with multiple orientations. This allows a blind or low vision user to select the best orientation for the task being performed. The device includes both opened and closed orientations. It is further configurable into document reading, near object inspection, far object inspection, and self inspection modes. The camera of the device can be manipulated by the user depending upon which of these orientations is selected. Furthermore, the camera automatically adjusts itself into one of two pre-set configurations whenever the device is opened or closed.
Abstract:
Disclosed is a video processor for a magnifier camera. In particular, the disclosure relates to a video processor that eliminates the use of a frame buffer. This, in turn, reduces the latency otherwise present in the video signal. The disclosed video processor also allows selected portions of the display to be shaded. This highlights the non-shaded portions of the display while at the same time allowing the entire object to be perceived by the user.
Abstract:
Disclosed is a portable magnifier camera with both storage and deployed configurations. In the storage configuration, the entire assembly can be carried via an associated handle. The camera is designed to rest on a desktop, or other planar surface, in the deployed configuration. When deployed, a housing and camera arm are positioned in a cantilevered arrangement over top of an object to be viewed. A camera housing, with an associated camera, is pivotally connected to the camera arm and is positioned over the object upon the camera being placed into a deployed configuration.
Abstract:
Disclosed is a magnifier for use by blind or low vision users. The magnifier includes a camera, such as a CMOS image sensor, that displays enlarged images upon a screen for easy viewing. The magnifier further includes a handle that is pivotally interconnected to a housing to allow for handheld use in a variety of different configurations.