Abstract:
An input video signal is applied to a transmission line first through a time direction emphasizer for emphasizing the levels of time direction high frequency components of the video signal, relative to the levels of low frequency components thereof; secondary through a vertical direction emphasizer; and thirdly through a horizontal direction emphasizer. Further, the received video signal is outputted as an output video signal from the transmission line first through a horizontal direction deemphasizer for deemphasizing the levels of horizontal direction high frequency components of the video signal, relative to the levels of low frequency components thereof; secondary through a vertical direction deemphasizer; and thirdly through a time direction deemphasizer. The emphasis and deemphasis method enables the dynamic range of the transmission line to be utilized effectively, while preventing erroneous operation on the reception side.
Abstract:
A video signal processing apparatus, typically for use as a video tape recorder/reproducer for recording and reproducing high-definition television signals, includes an encoder for converting a chrominance signal into a line sequential signal, time-compressing the line sequential signal and multiplexing the time-compressed line sequential signal with a luminance signal according to time-division multiplexing, thereby producing a time-division-multiplexed signal. A vertical emphasis circuit is connected to an input terminal of the encoder, for performing vertical nonlinear emphasis on the chrominance signal. The video signal processing apparatus also includes a vertical low-pass filter for preventing aliasing distortions from the chrominance signal due to the conversion of the chrominance signal into the line sequential signal. The vertical nonlinear emphasis is performed on the chrominance signal after the chrominance signal has been processed by the vertical low-pass filter.
Abstract:
An image is stably reproduced in a special reproduction mode of still, frame advance or slow motion mode without residual image and/or blur. A video signal reproducing apparatus operates to alternately repeat the steps of interrupting a de-emphasizing process at a time at which the de-emphasis process for one video image signal period is completed, holding a content of a frame memory constituting the de-emphasis circuit without refreshing the content and performing a de-emphasis process based the content of the memory during a subsequent video image signal period.
Abstract:
A video signal processing device is arranged to supply a digital video signal to an infinite impulse response digital filter, to supply the digital video signal from the filter to a look-up table circuit which has a non-linear input-output characteristic, and to emphasize a high-frequency component of the digital video signal by adding the output signal of the look-up table circuit to the digital video signal supplied to the filter, so that a non-linearly emphasizing process can be accomplished at a high speed on the digital video signal. Further, in the video signal processing device, a look-up table circuit is arranged to look up a table by using as an address the output signal of a first subtractor which receives a high-frequency-component-emphasized digital video signal as one of its inputs and to have a non-linear input-output characteristic, the output signal of the look-up table circuit is subtracted from the high-frequency-component-emphasized digital video signal to obtain a high-frequency-component-suppressed digital video signal, the video signal thus obtained is supplied to an infinite impulse response digital filter, and the output signal of the filter is supplied to the first subtracter as its other input, so that the digital video signal can be non-linearly deemphasized at a high speed.
Abstract:
A recording and reproducing apparatus for recording a carrier chrominance signal, comprises a separating circuit for separating a carrier chrominance signal from a color video signal, a recording signal processing circuit for converting the carrier chrominance signal into a carrier chrominance signal having a signal format suited for recording and reproduction, a recording circuit for recording an output signal of the recording signal processing circuit on a recording medium, a reproducing circuit for reproducing the recorded signal from the recording medium, a reproduced signal processing circuit for converting the reproduced signal from the reproducing circuit into a reproduced carrier chrominance signal having an original signal format, and a de-emphasis circuit responsive to the reproduced carrier chrominance signal from the reproduced signal processing circuit, for subjecting the reproduced carrier chrominance signal to a de-emphasis so that a high-frequency component in a vertical spatial frequency of the reproduced carrier chrominance signal is relatively attenuated compared to a low-frequency component of the reproduced carrier chrominance signal.
Abstract:
A video signal recording apparatus includes a first device for processing a first time segment of a video signal in response to a second time segment of the video signal. The first time segment relates to a first frame or field while the second time segment relates to a second frame or field which precedes the first frame or field. A second device is operative for interrupting the processing by the first device when the video signal starts to be subjected to an editing process. A third device is operative for recording an editing information signal and an output signal of the first device on a recording medium. The editing information signal represents a time of occurrence of the editing process.
Abstract:
In a magnetic recording control device, a plurality of test signals of different frequencies are recorded on and reproduced from a magnetic recording medium, and the reproduction levels of the test signals are detected. From the detection results, the frequency characteristics and electro-magnetic conversion characteristics of the magnetic recording medium are judged. A frequency correction in accordance with the judged frequency characteristics, and a record level correction in accordance with the judged electro-magnetic conversion characteristics are conducted on a video signal to be recorded.
Abstract:
Disclosed is a magnetic recording/reproducing apparatus, in which a luminance signal and a carrier chrominance signal are separated from a composite color video signal, a luminance carrier signal is frequency-modulated with the luminance signal, a frequency of a subcarrier signal of the carrier chrominance signal is frequency-converted into a low band frequency so as to dispose the carrier chrominance signal in the frequency band lower than the lower side band of the luminance signal, a sound carrier signal is frequency-modulated with an aural signal, the aural signal is disposed in the frequency band between the luminance signal and the carrier chrominance signal, and the video signal and the aural signal are frequency-multiplexed and recorded. A comb line filter is inserted in a recording luminance signal processing circuit for separating the luminance signal from the composite color video signal and for processing the luminance signal.
Abstract:
A magnetic recording apparatus for carrying out a recording by selectively using one of two kinds of recording systems comprises first through fourth rotary magnetic heads, a first circuit for producing an FM luminance signal, second and third circuits for producing first and second frequency division multiplexed signals, and a switching circuit. The first and second heads are mounted on a rotary body at mutually opposing positions, and have the same height position. The third and fourth heads are mounted on the rotary body at mutually opposing positions respectively in vicinities of the first and second heads along a rotating direction of the rotary body, and have the same height position. The switching circuit selectively supplies the output signals of the first and second circuits to the first through fourth heads when a luminance/color separation recording system is selected as the recording system, and selectively supplies the output signal of the third circuit to the first and second heads or to the third and fourth heads when a low band conversion color recording system is selected as the recording system.
Abstract:
A non-linear digital emphasis circuit for non-linearly emphasizing a high frequency component of an input digital video signal in accordance with an amplitude of the digital video signal. This emphasis circuit comprises: a digital filter for emphasizing the high frequency component of the digital video signal; and a memory in which a data conversion table to non-linearly compress the amplitude of the digital video signal is written and to which the digital video signal is supplied as an address input. The respective polarities of the address input of the memory and of the readout output therefrom are inverted by a polarity inverter in accordance with the polarity of the digital video signal. With this emphasis circuit, an error of the frequency characteristic and time and temperature changes thereof are not caused and no adjustment of the characteristic is needed. Also, this circuit can be formed as an integrated circuit by utilizing only digital circuits.