Abstract:
To control a decoding latency, larger blocks are nonequally segmented into smaller ones. The decoding process starts directly after reception of the first small block. The latency is defined by the latency of the last small block decoding. Changing the number of iterations during the turbo-code decoding also permits control of the decoding latency.
Abstract:
The method and device include determining by removing N−N, rows from an original generator matrix (G) defining the LDPC code and having N rows and N−M columns for obtaining a generator sub-matrix (G1) having N−M columns and N1 rows. The method also includes delivering by receiving an input data vector of size N−M and multiplying the input vector with the generator sub-matrix for obtaining the punctured encoded code word.
Abstract:
A rake receiver uses a delayed version of the received sequence and a delayed version of a scrambling code. The flexible hardware structure of the time-aligning and descrambling unit includes at least two delay chains and one multiplier. By controlling two multiplexers, the delayed versions of the received sequence can be multiplied with an arbitrary scrambling code having an arbitrary phase. During one chip period, one multiplication is performed for each path to be processed.
Abstract:
In a method according to the invention, N data symbols of a subscriber signal form a block. In a first method step, the block is divided into a plurality of partial blocks having Ns data symbols. The Ns data symbols are then allocated to sub-carriers and are modulated in parallel onto the various sub-carriers, the modulation being carried out for each of the sub-carriers with at least one individual code symbol. The sub-carriers are heterodyned to form a broadband carrier, so that the Ns data symbols are transmitted simultaneously. The transmission then takes place in N/Ns successive partial blocks via the radio interface.
Abstract:
The method is for managing operation of a first apparatus belonging to a first communication system and exchanging within the first communication system a multi-carrier modulated signal on several sub-carriers. The method includes detecting at the first apparatus the presence of an interfering signal emitted from a victim apparatus on a sub-carrier. The method may also include determining at the first apparatus the path loss between both apparatuses, determining from the path loss and from an allowed interference level at the victim apparatus a maximum allowed transmit power on the sub-carrier of a multi-carrier modulated signal to be transmitted from the first apparatus, and adjusting within the first apparatus the processing of the multi-carrier modulated signal to be transmitted in accordance with the maximum allowed transmit power.
Abstract:
The method is for detecting the eventual presence of an interferer that is adapted to interfere with a wireless device. The wireless device is provided with at least one receiving chain including an analog to digital conversion stage. The method includes receiving on the receiving chain an incident signal, and delivering to the ADC stage an analog signal from the incident signal. The method further includes elaborating or determining a binary information from a binary signal delivered by the ADC stage and representative of the level of the analog signal, analyzing a temporal evolution of the binary information and detecting the presence of the interferer from the analysis.
Abstract:
A method includes a main interference reduction mode for reducing the interference generated by a wideband device toward a narrowband device. The main interference reduction mode is performed within the wideband device and includes at least one of detecting an emission from and a reception performed by the narrowband device. A group of at least one sub-carrier having frequencies interfering with frequencies used by the narrowband device is determined from the detection step. The bits of the punctured stream that correspond to the information carried by the interfering sub-carriers of the group are determined and processed so that the processed bits are mapped into a reference symbol having an amplitude within a threshold of zero.
Abstract:
The method and device include determining by removing N−N, rows from an original generator matrix (G) defining the LDPC code and having N rows and N−M columns for obtaining a generator sub-matrix (G1) having N−M columns and N1 rows. The method also includes delivering by receiving an input data vector of size N−M and multiplying the input vector with the generator sub-matrix for obtaining the punctured encoded code word.
Abstract:
The method includes an interference deduction mode for reducing interferences between a wideband device and a narrowband device. The method is performed within the wideband device and includes detecting an emission from and/or a reception performed by the narrowband device; determining from the detection step a group of at least one sub-carrier having frequencies interfering with the narrowband devices; and frequency shifting at least a part of frequency band of the wideband device including the group of at least one interfering sub-carriers with a chosen frequency shift such that at least a part of frequency band of the narrowband device is excluded from the frequency band of the wideband device.
Abstract:
A method includes a main interference reduction mode for reducing the interference generated by a wideband device toward a narrowband device. The main interference reduction mode is performed within the wideband device and includes at least one of detecting an emission from and a reception performed by the narrowband device. A group of at least one sub-carrier having frequencies interfering with frequencies used by the narrowband device is determined from the detection step. The bits of the punctured stream that correspond to the information carried by the interfering sub-carriers of the group are determined and processed so that the processed bits are mapped into a reference symbol having an amplitude within a threshold of zero.