Abstract:
A map editing system for visually indicating the location of GPS devices on a map and identifying paths from the map. GPS data is received from a plurality of GPS devices. The data is filtered based parameters including the speed of the GPS devices. The filtered GPS data is displayed on a map using representations that visually indicate the location of the GPS devices that the data was received from. The representations can then be used for identifying and creating new paths on the map.
Abstract:
The disclosure includes a system and method for detecting fine grain copresence between users. The system includes a processor and a memory storing instructions that when executed cause the system to receive user input regarding copresence detection settings for a first user device, the copresence detection settings comprising a location and/or a user access control list, and determine a current location of the first user device. The system may determine whether copresence detection of the first user device is enabled at the current location based on the copresence detection settings and the current location. Based on determining that copresence detection is enabled, the system may refine copresence and perform an action based on fine grain copresence of the first and second user device.
Abstract:
A wearable computing device is described that detects an indication of movement associated with the wearable computing device when a user of the wearable computing device detected being located within a moving vehicle. Based at least in part on the indication of movement, a determination is made that the user of the wearable computing device is currently driving the moving vehicle. An operation is performed based on the determination that the user of the wearable computing device is currently driving the moving vehicle.
Abstract:
Methods and systems for performing a round trip time determination between two devices are described. An example method may include publishing, over a wireless network interface by a first device within a neighbor aware network (NAN) cluster, a schedule that invites devices within the NAN cluster to request, within a time window, to perform a round trip time (RTT) determination with the first device. The schedule may indicate that the time window begins at a time offset from a NAN discovery window and ends after a predetermined period of time has elapsed. The method may also include receiving a request, from a second device within the NAN cluster, to perform the RTT determination with the first device. The method may also include performing the RTT determination with the second device.
Abstract:
Maps are created that display representations of GPS data generated from a plurality of GPS devices. The GPS data received from the GPS devices is embodied as a representation having descriptive features that visually indicate the location, direction of travel, and speed of travel of the GPS device, and the representation is associated with a road segment on the map. The display of the GPS data from a plurality of GPS devices can be used for editing information about roads on maps and determining preferred routes.
Abstract:
The disclosure includes a system and method for detecting fine grain copresence between users. The system includes a processor and a memory storing instructions that when executed cause the system to: process one or more signals to determine coarse grain location information of a first device and a second device; determine whether the first device and the second device are copresent based on the coarse grain location information; in response to determining that the first device and the second device are copresent based on the coarse grain location information, transmit a signal to the second device to alert the second device to listen for a fine grain copresence token from the first device; and refine copresence based on receiving an indication that the second device has received the fine grain copresence token.
Abstract:
The present disclosure describes methods, systems, and apparatuses for determining the distance between two wireless scans of a mobile computing device. The distance is determined by scanning for wireless networks with a computing device. The scanning includes a receiving a plurality of network attributes for each wireless networks within the range of the mobile computing device. Further, the distance is determined by comparing the plurality of network attributes from the scanning with a reference set of network attributes. The comparing of network attributes is used to determine an attribute comparison. Finally, the distance between a position associated with the reference set of network attributes and the computing device, based on the attribute comparison, determines a position associated with the network.
Abstract:
Methods and systems for determining a location of a mobile device using a multi-modal Kalman filter are described. According to an example method, a mobile device may maintain multiple approximations of a location of a mobile device. Each approximation includes an estimated geographic location of the mobile device that is determined by filtering a respective subset of location estimates received by the mobile device using a respective Kalman filter, and one of the multiple approximations is designated as an active approximation. The method also involves receiving data indicating an estimate of a geographic location of the mobile device and, based on a distance between the estimate of the geographic location and a given approximation of the multiple approximations, updating the given approximation using the estimate of the geographic location. Additionally, the method involves providing for display a visual indication of an estimated geographic location associated with the active approximation.