Abstract:
A method, apparatus and computer program product are provided for constructing a diagnostic network model in a more efficient and timely manner and with improved consistency. A structured electronic representation of a document is automatically reviewed to identify the symptoms experienced by the complex system, the plurality of components of the complex system and the causal relationships between a failure of the respective components and the occurrence of the various symptoms. Respective probabilities can be associated with the causal relationships between the symptoms and the failure of the various components. A network model, such as a Bayesian network model, may then be automatically constructed to represent the symptoms, the components, the causal relationships between failure of the components and exhibition of the symptoms, and the probabilities of the respective causal relationships.
Abstract:
An automatic exposure control for an x-ray system using a large area solid state x-ray detector (26) includes an exposure control (36, 34) arranged to generate data of interest within the data generated by the detector and to adjust the dosage of x-rays to a predetermined level in response to data of interest so that an x-ray image of a patient is generated using the predetermined level.
Abstract:
Disclosed herein is a radiographic imaging system which performs system performance monitoring by (1) using automatic exposure control (AEC) components to predict the average image gray level; (2) obtaining measured average image gray levels from the portions of the X-ray detector situated in the X-ray shadow of the AEC components; and then (3) comparing the predicted and measured values. The predicted values are determined by use of a prediction model which is modified by a learning system over successive exposures to provide more accurate predictions. After the learning system has sufficiently developed the prediction model, the error between the predicted and measured gray level values may be monitored in later exposures and an error routine can be activated if the error exceeds a predetermined threshold. In this case, the error may indicate that system components in the imaging chain (e.g., the detector or AEC components) require maintenance.
Abstract:
A method for controlling a X-ray radiography system includes acquiring data from a digital X-ray detector, characterizing electromagnetic interference based upon the acquired data, selecting an electromagnetic interference compensation algorithm based upon the characterized electromagnetic interference, acquiring X-ray imaging data via the digital X-ray detector based upon the selected electromagnetic interference compensation algorithm, and processing the X-ray imaging data to produce image data capable of reconstruction in a user viewable form.
Abstract:
An X-ray imaging method includes in a digital X-ray detector including an array of discrete picture elements each including a photodiode and a transistor, applying a first voltage to the transistors of the discrete picture elements. The method also includes preparing for acquisition of X-ray image data by sampling data from the discrete picture elements while applying a second voltage to the transistors of the discrete picture elements not then being sampled, the second voltage being more negative than the first voltage. The method further includes receiving X-ray radiation on the detector from a source. The method yet further includes sampling X-ray image data from the discrete picture elements while applying the second voltage to the transistors of the discrete picture elements not then being sampled.
Abstract:
An X-ray imaging method includes in a digital X-ray detector including an array of discrete picture elements each including a photodiode and a transistor, applying a first voltage to the transistors of the discrete picture elements. The method also includes preparing for acquisition of X-ray image data by sampling data from the discrete picture elements while applying a second voltage to the transistors of the discrete picture elements not then being sampled, the second voltage being more negative than the first voltage. The method further includes receiving X-ray radiation on the detector from a source. The method yet further includes sampling X-ray image data from the discrete picture elements while applying the second voltage to the transistors of the discrete picture elements not then being sampled.
Abstract:
An X-ray imaging system includes a digital X-ray detector configured to acquire X-ray image data without communication from a source controller and to send the X-ray image data to a portable detector control device for processing and image preview. The source controller is configured to command X-ray emissions of X-rays from an X-ray radiation source for image exposures.
Abstract:
A method and System for identifying repeat clip instances in video data. The method comprises partitioning the video data into ordered video units utilising content-based keyframe sampling, wherein each video unit comprises a sequence interval between two consecutive keyframes; creating a fingerprint for each video unit; grouping at least two consecutive video units into one time-indexed video segment; and identifying the repeat clip instances based on correlation of the video segments. The method can be used for both discovering unknown repeat video clips and identifying instances of known repeat video clips automatically. The method can be used to identify short repeat video clips from less than a second long to a few minutes, such as tv station logos, program logos, tv commercials which are widely used in news video and other daily broadcasting programs.
Abstract:
Systems and methods for x-ray image identification are provided. The systems and methods associate patient information with image information. The method includes acquiring patient information from an identification member external to the digital x-ray detector and storing the patient information within the x-ray detector or on an image. The method further includes associating the patient information with the images acquired by the x-ray imaging system and communicating the acquired images with associated information to a host system when the x-ray detector is connected to the host system.
Abstract:
A computer implemented method, apparatus, and computer program product for processing aircraft software parts. A crate containing an aircraft software part is received from a source. Signatures are validated for the crate and the aircraft software part. If the signatures are valid, the crate is unpacked. The contents of the incoming crate are displayed. The aircraft software part is unpacked. Responsive to a request to upload the stored part to a library in the aircraft software part management apparatus, a determination is made as to whether the stored part meets a policy. If the stored part meets the policy, the part is signed. The signed part is placed in a crate and is signed to form a signed crate wherein signatures for the signed aircraft software part and the signed crate are different from the set of signatures in the incoming crate. The signed crate is sent to the library.