摘要:
Briefly, values representative of ventricular end-diastolic volume (EDV) are detected using ventricular electrodes and then heart failure, if occurring within the patient, is evaluated based on ventricular EDV. In this manner, ventricular EDV is used as a proxy for ventricular end-diastolic pressure. By using ventricular EDV instead of ventricular end-diastolic pressure, heart failure is detected and evaluated without requiring sophisticated sensors or complex algorithms. Instead, ventricular EDV is easily and reliably measured using impedance signals sensed by implanted ventricular pacing/sensing electrodes. The severity of heart failure is also evaluated based on ventricular EDV values and heart failure progression is tracked based on changes, if any, in ventricular EDV values over time.
摘要:
An implantable cardiac stimulation device is configured to measure selected ventricular contraction parameters and apply stimulation therapy based on an analysis of the ventricular contraction parameters. The ventricular contraction parameters may include impedance values that correspond to the volume of fluid in the right ventricle and the left ventricle. The ventricular contraction parameters may include motion values that correspond to heart sounds/motion in the right ventricle and the left ventricle. The ventricular contraction parameters can be used to form a ventricular parameter loop associated with one or more cardiac cycles. The total area within the resulting loop should be maintained below a threshold value through the application of applicable stimulation therapy and/or further physician assistance.
摘要:
An implantable cardiac stimulation device is configured to measure selected ventricular contraction parameters and possibly apply stimulation therapy based on the ventricular contraction parameters. In accordance with one aspect, the ventricular contraction parameters include impedance values that correspond to the volume of fluid in the right ventricle and the left ventricle. In accordance with another aspect, the ventricular contraction parameters include motion values that correspond to heart sounds/motion in the right ventricle and the left ventricle. The ventricular contraction parameters can be used to form pseudo P-V loop from which treatment decisions can be made.
摘要:
A system and corresponding method are provided to reliably detect capture during multi-chamber stimulation, and to further monitor the progression of congestive heart failure. The system provides a method by which intracardiac electrogram (IEGM) characteristics representing single-chamber capture and bi-ventricular capture are stored in memory and displayed. The annotation of the displayed waveforms is such that events associated with loss of capture, single-chamber capture, and bi-ventricular capture are clearly marked for ready interpretation by the physician. In a first situation, a stimulation pulse is followed by a time delay window and a subsequent depolarization complex that represents intrinsic responses of the chambers that have not been captured. In a second situation, a stimulation pulse is followed almost immediately by an evoked response that represents capture of one chamber, and a subsequent depolarization complex that represents an intrinsic response of one chamber that has not been captured. In a third situation, a stimulation pulse is almost immediately followed by an evoked response that represents simultaneous capture of two chambers.
摘要:
A system and method are provided for compensating for the drop in blood pressure upon standing. Upon transition from prolonged sitting, lying down, or standing position, the pacemaker abruptly increasing its pacing rate upon postural transition. The pacing rate is abruptly increased to about 80-100 bpm in 20 seconds-one minute. The pacing rate then decreases slowly to another high rate in two or three minutes and then follows the metabolically indicated rate. This pacing rate is triggered whenever a patient stands after a prolonged reclined or supine/prone position as indicated by activity variance measurements.
摘要:
A pacing system which determines a dual indicated rate (DIR) corresponding to a desired pacing rate of the heart of the patient by selecting the maximum between an activity indicated rate (AIR) and a metabolic indicated rate (MIR). The activity indicated rate is a pacing rate that is determined based upon a well-known acceleration-based sensor. The metabolic indicated rate is a desired pacing rate of the heart as determined based upon a well-known metabolic sensor, such as a minute ventilation sensor. Determining the dual indicated rate by selecting between the two rates provided by these two sensors results in the advantageous use of the activity indicated rate during periods of low-level and brisk activity and the use of the metabolic indicated rate during periods of high exertion.
摘要:
Methods and apparatus are provided for measuring the impedance of a patient's body. Pulse generating circuitry within a rate-responsive pacemaker is used to generate an impedance measurement signal that is applied to the body of the patient with conventional pacemaker leads. The impedance measurement signal contains a series of multiphasic impedance measurement waveforms, which have no net DC value and zero value after second integration. The impedance measurement signal allows the impedance of the body to be measured without interfering with external cardiac monitoring equipment such as electrocardiogram machines.
摘要:
An implantable system acquires intracardiac impedance with an implantable lead system. In one implementation, the system generates frequency-rich, low energy, multi-phasic waveforms that provide a net-zero charge and a net-zero voltage. When applied to bodily tissues, current pulses or voltage pulses having the multi-phasic waveform provide increased specificity and sensitivity in probing tissue. The effects of the applied pulses are sensed as a corresponding waveform. The waveforms of the applied and sensed pulses can be integrated to obtain corresponding area values that represent the current and voltage across a spectrum of frequencies. These areas can be compared to obtain a reliable impedance value for the tissue. Frequency response, phase delay, and response to modulated pulse width can also be measured to determine a relative capacitance of the tissue, indicative of infarcted tissue, blood to tissue ratio, degree of edema, and other physiological parameters.
摘要:
A cardiac analysis system is provided that includes an implantable medical device (IMD), at least one sensor, and an external device. The IMD has electrodes positioned proximate to a heart that sense first cardiac signals of the heart and associated with a clinical ventricular tachycardia (VT) event and second cardiac signals associated with an induced VT event. The sensor measures first and second cardiac parameters of the heart associated with the clinical and induced VT events, respectively. The external device is configured to receive the first and second cardiac signals associated with the clinical and the induced VT events and the first and second cardiac parameters associated with the clinical and the induced VT events. The external device compares the first and second cardiac signals and compares the first and second cardiac parameters to determine if the clinical and induced VT events are a common type of VT event.
摘要:
An implantable system acquires intracardiac impedance with an implantable lead system. In one implementation, the system generates frequency-rich, low energy, multi-phasic waveforms that provide a net-zero charge and a net-zero voltage. When applied to bodily tissues, current pulses or voltage pulses having the multi-phasic waveform provide increased specificity and sensitivity in probing tissue. The effects of the applied pulses are sensed as a corresponding waveform. The waveforms of the applied and sensed pulses can be integrated to obtain corresponding area values that represent the current and voltage across a spectrum of frequencies. These areas can be compared to obtain a reliable impedance value for the tissue. Frequency response, phase delay, and response to modulated pulse width can also be measured to determine a relative capacitance of the tissue, indicative of infarcted tissue, blood to tissue ratio, degree of edema, and other physiological parameters.