CARRIER-BASED PULSE WIDTH MODULATION CONTROL FOR BACK-TO-BACK VOLTAGE SOURCE CONVERTERS

    公开(公告)号:US20210203242A1

    公开(公告)日:2021-07-01

    申请号:US16730301

    申请日:2019-12-30

    Abstract: A method for controlling a voltage source power converter of a renewable energy power conversion system includes providing the voltage source power converter having, at least, a rotor-side converter and a line-side converter. The method also includes generating, via a converter controller, a first set of switching pulses based on a third-harmonic phase opposition carrier-based pulse width modulation (PO_CB_PWM) scheme. Further, the method includes generating, via the converter controller, a second set of switching pulses based on a third-harmonic in phase carrier-based pulse width modulation (IP_CB_PWM) scheme. As such, the method includes implementing, via the converter controller, a pulse-width modulation scheme for the rotor-side and line-side converters using the first and second sets of switching pulses, respectively, to obtain an output voltage from the voltage source converter to a desired magnitude, shape, and/or frequency.

    Extended reaction power for wind farms

    公开(公告)号:US10731630B2

    公开(公告)日:2020-08-04

    申请号:US15861063

    申请日:2018-01-03

    Abstract: A control method for increasing reactive power generation of a wind turbine having a Doubly-Fed Induction Generator (DFIG) includes obtaining, by a control device having one or more processors and one or more memory devices, wind forecast data of the wind turbine. Further, the method includes generating, by the control device, a real-time thermal model of the DFIG of the wind turbine using the wind forecast data. More specifically, the thermal model defines a thermal capacity for the DFIG that does not exceed system limits. Thus, the method also includes dynamically adjusting, by the control device, a reactive power set point of the DFIG of the wind turbine based on the real-time thermal model.

    Systems and Methods for Controlling Electrical Power Systems Connected to a Power Grid

    公开(公告)号:US20200052493A1

    公开(公告)日:2020-02-13

    申请号:US16523432

    申请日:2019-07-26

    Abstract: The present application relates to a method for controlling a power system connected to a power grid, including: receiving a reactive power instruction and a measured reactive power from a generator; generating a reactive power error signal based on the difference between the reactive power instruction and the measured reactive power; receiving the reactive power error signal; generating a voltage instruction based on reactive power error signal; generating a voltage droop signal based on a reference reactance and a voltage at a point of common coupling; generating a voltage error signal according to at least one of the voltage instruction or the measured terminal voltage of the generator and the voltage droop signal; and producing a reactive current instruction for the converter power path based on the voltage error signal. The present application also discloses a control system for a power system connected to a power grid and a wind farm.

    Extended Reactive Power for Wind Farms
    37.
    发明申请

    公开(公告)号:US20190203693A1

    公开(公告)日:2019-07-04

    申请号:US15861063

    申请日:2018-01-03

    Abstract: A control method for increasing reactive power generation of a wind turbine having a Doubly-Fed Induction Generator (DFIG) includes obtaining, by a control device having one or more processors and one or more memory devices, wind forecast data of the wind turbine. Further, the method includes generating, by the control device, a real-time thermal model of the DFIG of the wind turbine using the wind forecast data. More specifically, the thermal model defines a thermal capacity for the DFIG that does not exceed system limits. Thus, the method also includes dynamically adjusting, by the control device, a reactive power set point of the DFIG of the wind turbine based on the real-time thermal model.

    DFIG-based UPS systems and methods of control

    公开(公告)号:US10008857B2

    公开(公告)日:2018-06-26

    申请号:US15066133

    申请日:2016-03-10

    Abstract: An uninterruptable power supply (UPS) system for providing power to a load coupled to a utility power source is provided. The UPS system includes a doubly-fed induction generator (DFIG), a rechargeable energy storage system, a first inverter, and a controller in communication with the DFIG and the first inverter. The DFIG includes a stator and a rotor coupled to the load. The stator and rotor are magnetically coupled together. The DFIG generates an auxiliary power output. The first inverter is coupled between the rotor and the rechargeable energy storage system. The controller detects a power disturbance associated with the utility power source and controls the first inverter to provide an excitation input to the rotor in response to the power disturbance. The DFIG provides the auxiliary power output to the load based on the excitation input.

Patent Agency Ranking