Abstract:
A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
Abstract:
An aerodynamic hub assembly for a wind turbine is disclosed. The hub assembly may include a hub extension, a rotor blade having a blade root and a blade tip, and a hub airfoil section mounted at least partially over the hub extension. The hub airfoil section may be fixed relative to the rotor blade or may be configured to rotate about a common pitch axis with the rotor blade. The hub extension may be connected to and extend radially from a center of the hub assembly. Further, the hub assembly may include a pitch bearing having an inner race and an outer race, wherein the pitch bearing may be coupled between the hub extension and the blade root. Additionally, the hub assembly may also include an aerodynamically-shaped spinner, wherein the spinner may house at least a portion of a root structure extending radially from the center of the hub assembly.
Abstract:
A heat exchanger is provided that can include furcating unit cells coupled with each other. Each of the unit cells can be elongated along an axis and include a sidewall that defines annular ring openings on opposite ends of the unit cell along the axis. The sidewall also can define undulating annular rings between the annular ring openings and axially separated from each other along the axis. The sidewall can further define angled openings into the unit cell both above and below each of the undulating annular rings. At least a first opening of the annular ring openings and the angled openings can be configured to be an inlet to receive a first fluid into the unit cell and at least a second opening of the annular ring openings and the angled openings configured to be an outlet through which the first fluid exits the unit cell.
Abstract:
A heat exchanger is provided that can include furcating unit cells coupled with each other. Each of the unit cells can be elongated along an axis and include a sidewall that defines annular ring openings on opposite ends of the unit cell along the axis. The sidewall also can define undulating annular rings between the annular ring openings and axially separated from each other along the axis. The sidewall can further define angled openings into the unit cell both above and below each of the undulating annular rings. At least a first opening of the annular ring openings and the angled openings can be configured to be an inlet to receive a first fluid into the unit cell and at least a second opening of the annular ring openings and the angled openings configured to be an outlet through which the first fluid exits the unit cell.
Abstract:
A carbon dioxide (CO2) capture system and method for removing CO2 from an inlet gas including a first fluid stream inlet providing for the flow of a first fluid stream, such as an inlet gas containing CO2, and a second fluid stream inlet providing for the flow of a second fluid stream, such as steam, an outlet providing for the flow of a CO2 depleted stream from the CO2 capture system, an outlet providing for the flow of a CO2 stream from the CO2 capture system and a concentrator in fluid communication with the first fluid stream. The system further including a first contactor and a second contactor. Each of the first contactor and the second contactor defining therein a first fluidically-isolated, sorbent-integrated, fluid domain for flow of the first fluid stream and CO2 adsorption and a second fluidically-isolated fluid domain for flow of the second fluid stream to assist in desorption.
Abstract:
A heat exchange module, a heat exchanger and a method for additively manufacturing the heat exchanger are provided. The heat exchanger includes a plurality of stacked heat exchange modules defining a flow passageway. Each heat exchange module defining a substantially curved closed geometry defining a central axis that extends along the axial direction. Each heat exchange module includes a first heat exchanging fluid inlet, a first heat exchanging fluid outlet and a plurality of heat exchange tubes fluidly coupling the first heat exchanging fluid inlet and the first heat exchanging fluid outlet. The plurality of heat exchange tubes defining a plurality of first heat exchanging fluid flow passages of equal length and a plurality of second heat exchanging fluid flow passages of equal hydraulic diameter.
Abstract:
Methods of manufacturing a cementitious structure, such as a structure for supporting a wind turbine, include additively printing, via an additive printing device, one or more contours that include a cementitious material so as to form a cementitious structure in a layer by layer manner such that a first portion of the plurality of contours comprises a first plurality of contour coupling features that engage with a second plurality of contour coupling features of a second portion of the plurality of contours.
Abstract:
A topping cycle fuel cell unit includes a support plate having internal flow passages that extend to combustion outlets, a first electrode layer, an electrolyte layer, and a second electrode layer. The second electrode layer is configured to be coupled to another support plate of another fuel cell unit. The internal flow passages are configured to receive and direct air across the first electrolyte layer or the second electrolyte layer and to receive and direct fuel across another of the first electrolyte layer or the second electrolyte layer such that the first electrode layer, the electrolyte layer, and the second electrode layer create electric current. The internal flow passages are configured to direct at least some of the air and at least some of the fuel to the combustion outlets where the at least some air and the at least some fuel is combusted.
Abstract:
A method for manufacturing a tower structure of a wind turbine includes additively printing at least a portion of a frame shape of the tower structure of the wind turbine of a first material on a foundation of the tower structure. Further, the first material has a first cure rate. The method also includes allowing the portion of the frame shape to at least partially solidify. The method includes providing a second material around and/or within the portion of the frame shape such that the portion of the frame shape provides support for the second material. The second material includes a cementitious material having a second cure rate that is slower than the first cure rate, with the different cure rates reducing the net printing time for the overall structure. Moreover, the method includes allowing the second material to at least partially solidify so as to form the tower structure.
Abstract:
A method for manufacturing a tower structure of a wind turbine includes printing, via an additive printing device, the tower structure of the wind turbine of a cementitious material. During printing, the method includes embedding one or more reinforcement sensing elements at least partially within the cementitious material at one or more locations. Thus, the reinforcement sensing element(s) are configured for sensing structural health of the tower structure, sensing temperature of the cementitious material, heating to control cure time of the cementitious material, and/or reinforcing the cementitious material. In addition, the method includes curing the cementitious material so as to form the tower structure.