Abstract:
A blade support assembly for use with a casing cutter to cut through casing or pipe downhole in a well. A tubular body fits over the casing cutter, with slots aligned with the pivoting cutter blades. Support plates next to each slot provide support for the blades during cutting operations. Torque keys and matching torque slots in the blade support assembly and the casing cutter body transfer torque from the casing cutter body to the blade support assembly, and thence to the blades.
Abstract:
A cutting tool (22) includes a plurality of pivoted blades (36) for swinging outwardly to an expanded radial position for first cutting the walls of multiple casing strings (10, 11), and then removing a predetermined length of the casing strings (10, 11) simultaneously in a cutting action. Pivoted blades (36) have cutting elements (66) of a similar size and shape positioned about upper, lower sides (62) of the blades (36) engage the upper annular cut ends of the casing strings (10, 11) in a cutting action without tripping or removal from the bore hole.
Abstract:
A cutting tool (22) includes a plurality of pivoted blades (36) for swinging outwardly to an expanded radial position for first cutting the walls of multiple casing strings (10, 11), and then removing a predetermined length of the casing strings (10, 11) simultaneously in a cutting action. Pivoted blades (36) have cutting elements (66) of a similar size and shape positioned about upper, lower, and outer sides (60, 62, 64) of the blades (36). The lower sides (62) of the blades (36) engage the upper annular cut ends of the casing strings (10, 11) in a cutting action without tripping or removal from the bore hole.
Abstract:
A cutting tool (22) having elongate cutter arms (36) mounted about a pivot pin (40) for outward swinging movement. Cutting blades (58, 60) are mounted on the lower ends of the cutter arms (36) and have a plurality of closely fitting hard carbide cutting elements (90) secured thereto and forming an inclined leading planar cutting surface (82) inclined from the upper end of the associated blade (58, 60) at an angle A between one (1) degree and twenty (20) degrees relative to the direction of rotation. The cutting elements (90) have parallel rear and front faces (90A, 90B) connected by a peripheral side surface (90C) extending perpendicularly to the parallel faces (90A, 90B). Several embodiments of pivotally mounted cutter arms (36, 36A, 36B, and 36C) are illustrated including various blades (58, 60, 58F, 60F, 116 and 144) having a plurality of closely fitting cutting elements arranged thereon in a plurality of longitudinally and transversely extending rows for forming the leading inclined planar cutting surface.
Abstract:
A stabilizer (36) mounted on a mandrel (14) of a workstring (12) within a casing (10) of a well bore hole. The stabilizer (36) has an upper carrier (38) fixed to the mandrel (14) and a lower carrier (40) mounted on the mandrel (14) for relative sliding movement. Shoes (70) are mounted by links or arms (64, 74) to bearing housing (50, 80) on the carriers (38, 40). The bearing housings (50, 80) are mounted for relative rotation on the carriers (38, 40) and permit the mandrel (14) and workstring (12) to rotate relative to the shoes (70) upon fluid actuation of lower carrier (40) and engagement of the casing (10) by the shoes (70).
Abstract:
A grapple device is secured to a mill to allow relative rotation between them. The grapple has an outward bias to allow it to grip the packer bore or an extension from the packer. The mandrel has a wedge adjacent its lower end and torque fingers that fit between grapple segments when relative longitudinal movement occurs between the mandrel and the grapple assembly. The grapple assembly has a left hand thread so that it comes out of the packer if the mandrel engages the grapple assembly in a manner for tandem rotation. The torque fingers on the wedge on the mandrel support the grapple fingers over their length as rotation to the right removes the grapple assembly from the packer bore. Reverse circulation takes away the cuttings into the mill bore where they are separated from the reverse circulating fluid.
Abstract:
A seal system for forming a fluid seal from an inner tubular member outwardly against an outer tubular member. The seal system includes a packer element that is radially expandable from a reduced diameter, unset condition to an enlarged diameter, set condition; and a radially expandable seal element surrounding the packer element and creating a fluid sealing engagement outwardly against the outer tubular member.
Abstract:
Disclosed herein is a method of installing an elastomeric element onto a tubular. The method includes, positioning the elastomeric element onto a radially expandable member, radially expanding the radially expandable member and the elastomeric element installed thereon, positioning a tubular coaxially with the radially expandable member, and axially urging the elastomeric element off the radially expandable member thereby allowing the elastomeric element to be positioned coaxially about an outer perimetrical surface of the tubular.
Abstract:
Cutting elements for cutting tools comprise a pre-formed fracture plane disposed in at least one surface of the cutting elements. The pre-formed fracture plane can comprise a groove cut into one of the surfaces of the cutting element, or the pre-formed fracture plane can be formed by using a laser or other heat concentrating source to weaken a portion of one of the surfaces of the cutting element so that the cutting element will break along the pre-formed fracture plane.
Abstract:
A debris removal tool has a lower end pickup hose into which debris laden fluid is pulled when there is circulation through the debris removal tool from the surface. An anchor near the open end of the hose stabilizes the lower end near a recess or groove from which debris is to be removed. Once the anchor is set the hose can be extended or retracted as well as rotated on its axis to pick up debris. A camera can be located in or near the hose opening to be able to see where the debris is located and for confirmation that the debris is being removed and that the debris has fully been removed.