Abstract:
A security system includes a plurality of sensors to detect entry into a premises by an unauthorized party and to detect a location of the unauthorized party through at least a portion of the premises, a storage component to store a log of the detected location of the unauthorized party, an audio component to audibly announce the detected location of the unauthorized party, and a processor to control the audio component to announce the detected location at predetermined intervals or upon a change in the detected location of the unauthorized party.
Abstract:
A method and system for optically detecting a user. A sequence of patterns of radiation reflected from an object in a room may be captured by a device. The patterns of radiation may be infrared radiation emitted from the device. A sequence of variations between the captured sequence of patterns of radiation and the emitted sequence of patterns of radiation may be determined and object characteristics of an object may be determined based upon the sequence of variations. The object characteristics may be a sequence of dimensions of the object and a sequence of locations of the object. The method may determine the first is a user based upon the determined object characteristics and a room profile. The room profile may include a plurality of object characteristics of one or more objects in the room.
Abstract:
A method of providing access to secure features of a device includes detecting motion of a secured device during entry of first access credentials on the secured device, storing first motion data in association with the first access credentials, the first motion data indicating a pattern of the detected motion, and granting access to a secured feature of the secured device when a user enters user access credentials matching the first access credentials accompanied by detected motion that produces user motion data matching the first motion data to a degree within a defined valid data range of the first motion data
Abstract:
An image of at least a portion of a room may be received, the image of the room comprising an image of a sensor mounted in the room. At least one optical parameter related to the image of the room may also be received. A distance may be determined between the sensor and a camera that captured the image of the room, wherein the determination of the distance is based at least in part on the optical parameters and on known physical dimensions of the sensor. A sensitivity requirement of the sensor may be determined, based on the distance. The determined sensitivity may be sent to control logic of the sensor.
Abstract:
Methods and apparatus relating to processing a low-energy data packet are provided. A method includes receiving, using a receiver in a portable wireless device, a low-energy data packet from a low-energy tag. The portable wireless device is stationary. The low-energy data packet includes data identifying the low-energy tag. The method can also include determining at least an approximate distance between the low-energy tag and the portable wireless device. The method can also include transmitting, via an intermediate wireless device and to a central device, the data identifying the low-energy tag, the data identifying the at least approximate distance, or both.
Abstract:
A method may receive, in response to a first event, a first sensor data from a first sensor, and receive, in response to the first event, a second sensor data from a second sensor. The method may select, from among a plurality of event profiles, a first event profile. The first event profile may comprise a first condition matching the first sensor data, a second condition matching the second sensor data, and a plurality of conditions which, when met, indicate the occurrence of the first event. Conditions may include a sensor data, a time period, a user data, a sequence of conditions, or a combination of such data. The first event profile may comprise a first event notice to be provided in response to the occurrence of the first event. The method may provide the first event notice to a recipient indicated by the event profile.
Abstract:
A portable device such as a key fob includes a piezoelectric component, such as a vibrator or buzzer, and an accelerometer. Self-testing of the piezoelectric component in the portable device may be achieved by applying a test electrical signal to the piezoelectric component and determining whether a vibration is detected by the accelerometer. If a vibration is detected by the accelerometer, then a determination is made as to whether the vibration detected by the accelerometer matches the test electric signal applied to the piezoelectric component.
Abstract:
A method of providing access to secure features of a device includes detecting motion of a secured device during entry of first access credentials on the secured device, storing first motion data in association with the first access credentials, the first motion data indicating a pattern of the detected motion, and granting access to a secured feature of the secured device when a user enters user access credentials matching the first access credentials accompanied by detected motion that produces user motion data matching the first motion data to a degree within a defined valid data range of the first motion data.
Abstract:
Systems and methods that use pattern recognition to characterize stimuli captured by passive infrared motion sensors are provided. The pattern recognition can be performed by comparing one or more features extracted from motion sensor data to known features. This provides enhanced pet rejection that exceeds performance of conventional threshold based pet rejecting PIR systems. In some embodiments, the known features can be obtained through simulations that accurately model the performance of motion sensors and their response to a large variety of stimuli. The simulations result in an extensive database that can be accessed by motion sensor units when performing pattern matching algorithms to determine whether the stimulus is a human or a pet.
Abstract:
Systems and techniques are provided for occupancy based volume adjustment. A signal including detected locations for several persons may be received. An occupancy model may be generated based on the detected locations. A volume adjustment for a speaker may be generated based on the occupancy model and a target sound level range for each of the detected locations. The volume of the speaker may be adjusted based on the volume adjustment. A signal including a detected location of one other person may be received. A location of other speakers may be received. The occupancy model may be generated based on the detected location of the one other person. The speaker may be determined to be closer to the one other person than any of the other speakers. The volume adjustment for the speaker may be generated based in part on the location of the one other person.