-
公开(公告)号:US20240176995A1
公开(公告)日:2024-05-30
申请号:US18466751
申请日:2023-09-13
Applicant: Google LLC
Inventor: Gregory Sean Corrado , Ilya Sutskever , Jeffrey Adgate Dean
CPC classification number: G06N3/047 , G06N3/042 , G06N3/044 , G06N3/063 , G16H50/20 , G06N3/02 , G06N3/08
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting likelihoods of conditions being satisfied using recurrent neural networks. One of the systems is configured to process a temporal sequence comprising a respective input at each of a plurality of time steps and comprises: one or more recurrent neural network layers; one or more logistic regression nodes, wherein each of the logistic regression nodes corresponds to a respective condition from a predetermined set of conditions, and wherein each of the logistic regression nodes is configured to, for each of the plurality of time steps: receive the network internal state for the time step; and process the network internal state for the time step in accordance with current values of a set of parameters of the logistic regression node to generate a future condition score for the corresponding condition for the time step.
-
公开(公告)号:US11960519B2
公开(公告)日:2024-04-16
申请号:US16998891
申请日:2020-08-20
Applicant: Google LLC
Inventor: Gregory Sean Corrado , Tomas Mikolov , Samy Bengio , Yoram Singer , Jonathon Shlens , Andrea L Frome , Jeffrey Adgate Dean , Mohammad Norouzi
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying data objects. One of the methods includes obtaining data that associates each term in a vocabulary of terms with a respective high-dimensional representation of the term; obtaining classification data for a data object, wherein the classification data includes a respective score for each of a plurality of categories, and wherein each of the categories is associated with a respective category label; computing an aggregate high-dimensional representation for the data object from high-dimensional representations for the category labels associated with the categories and the respective scores; identifying a first term in the vocabulary of terms having a high-dimensional representation that is closest to the aggregate high-dimensional representation; and selecting the first term as a category label for the data object.
-
公开(公告)号:US11822521B2
公开(公告)日:2023-11-21
申请号:US17671068
申请日:2022-02-14
Applicant: Google LLC
Inventor: Jeffrey Adgate Dean , Sanjay Ghemawat , Andrew Fikes , Yasushi Saito
IPC: G06F16/182 , G06F16/22 , G06F9/50 , G06F16/13 , H04L67/1001 , H04L67/1004 , H04L67/1029
CPC classification number: G06F16/182 , G06F9/5083 , G06F16/13 , G06F16/184 , G06F16/22 , H04L67/1001 , H04L67/1004 , H04L67/1029
Abstract: A method of accessing data includes storing a table that includes a plurality of tablets corresponding to distinct non-overlapping table portions. Respective pluralities of tablet access objects and application objects are stored in a plurality of servers. A distinct application object and distinct tablet are associated with each tablet access object. Each application object corresponds to a distinct instantiation of an application associated with the table. The tablet access objects and associated application objects are redistributed among the servers in accordance with a first load-balancing criterion. A first request directed to a respective tablet is received from a client. In response, the tablet access object associated with the respective tablet is used to perform a data access operation on the respective tablet, and the application object associated with the respective tablet is used to perform an additional computational operation to produce a result to be returned to the client.
-
公开(公告)号:US11556690B2
公开(公告)日:2023-01-17
申请号:US17555085
申请日:2021-12-17
Applicant: Google LLC
Inventor: Anna Darling Goldie , Azalia Mirhoseini , Ebrahim Songhori , Wenjie Jiang , Shen Wang , Roger David Carpenter , Young-Joon Lee , Mustafa Nazim Yazgan , Chian-min Richard Ho , Quoc V. Le , James Laudon , Jeffrey Adgate Dean , Kavya Srinivasa Setty , Omkar Pathak
IPC: G06F30/39 , G06F30/392 , G06F30/398 , G06N3/08
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.
-
公开(公告)号:US11367112B2
公开(公告)日:2022-06-21
申请号:US16743923
申请日:2020-01-15
Applicant: Google LLC
Inventor: Jeffrey Adgate Dean , Krishna Bharat , Paul Buchheit
IPC: G06F16/951 , G06Q30/02 , G06F16/9535
Abstract: The usefulness of content (target content), such as advertisements, may be increased by determining additional content and providing such additional content in association with the content. The target content may be text, a Web page, a URL, a search query, etc. The additional content might be related suggested queries (e.g. “Try a search for ______”), news articles (or excerpts or summaries thereof), reviews (or excerpts or summaries thereof), advertisements, user group messages, etc.
-
公开(公告)号:US20220108058A1
公开(公告)日:2022-04-07
申请号:US17555085
申请日:2021-12-17
Applicant: Google LLC
Inventor: Anna Darling Goldie , Azalia Mirhoseini , Ebrahim Songhori , Wenjie Jiang , Shen Wang , Roger David Carpenter , Young-Joon Lee , Mustafa Nazim Yazgan , Chian-min Richard Ho , Quoc V. Le , James Laudon , Jeffrey Adgate Dean , Kavya Srinivasa Setty , Omkar Pathak
IPC: G06F30/392 , G06F30/398 , G06N3/08
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.
-
公开(公告)号:US20200279163A1
公开(公告)日:2020-09-03
申请号:US16878720
申请日:2020-05-20
Applicant: Google LLC
Inventor: Samuel Bengio , Mohammad Norouzi , Benoit Steiner , Jeffrey Adgate Dean , Hieu Hy Pham , Azalia Mirhoseini , Quoc V. Le , Naveen Kumar , Yuefeng Zhou , Rasmus Munk Larsen
Abstract: A method for determining a placement for machine learning model operations across multiple hardware devices is described. The method includes receiving data specifying a machine learning model to be placed for distributed processing on multiple hardware devices; generating, from the data, a sequence of operation embeddings, each operation embedding in the sequence characterizing respective operations necessary to perform the processing of the machine learning model; processing the sequence of operation embeddings using a placement recurrent neural network in accordance with first values of a plurality network parameters of the placement recurrent neural network to generate a network output that defines a placement of the operations characterized by the operation embeddings in the sequence across the plurality of devices; and scheduling the machine learning model for processing by the multiple hardware devices by placing the operations on the multiple devices according to the placement defined by the network output.
-
公开(公告)号:US20190392294A1
公开(公告)日:2019-12-26
申请号:US16554217
申请日:2019-08-28
Applicant: Google LLC
Inventor: Benoit Steiner , Anna Darling Goldie , Jeffrey Adgate Dean , Hieu Hy Pham , Azalia Mirhoseini , Quoc V. Le
Abstract: A method for determining a placement for machine learning model operations across multiple hardware devices includes receiving data specifying machine learning operations, and determining a placement that assigns each of the operations specified by the data to a respective device from the multiple hardware devices. Determining the placement includes: generating, from the data, a respective operation embedding for each of the operations; grouping the operations into multiple operation groups, comprising processing each of the respective operation embeddings using a grouper neural network having multiple grouper parameters, in which the grouper neural network is configured to, for each of the operations, process the operation embedding for the operation in accordance with first values of the grouper parameters to generate a grouper output that assigns the operation to an operation group from the multiple operation groups; and assigning each of the operation groups to a respective device from the multiple hardware devices.
-
公开(公告)号:US10482503B2
公开(公告)日:2019-11-19
申请号:US16055004
申请日:2018-08-03
Applicant: GOOGLE LLC
Inventor: Jeffrey Adgate Dean , Georges Harik , Paul Buchheit
IPC: G06F16/00 , G06Q30/02 , G06F16/2455
Abstract: Targeting information (also referred to as ad “serving constraints”) or candidate targeting information for an advertisement is identified. Targeting information may be identified by extracting topics or concepts from, and/or generating topics or concepts based on, ad information, such as information from a Web page to which an ad is linked (or some other Web page of interest to the ad or advertiser). The topics or concepts may be relevant queries associated with the Web page of interest, clusters, etc.
-
公开(公告)号:US20190303761A1
公开(公告)日:2019-10-03
申请号:US16445330
申请日:2019-06-19
Applicant: Google LLC
Inventor: Samy Bengio , Mohammad Edward Norouzi , Benoit Steiner , Jeffrey Adgate Dean , Hieu Hy Pham , Azalia Mirhoseini , Quoc V. Le , Naveen Kumar , Yuefeng Zhou , Rasmus Munk Larsen
Abstract: A method for determining a placement for machine learning model operations across multiple hardware devices is described. The method includes receiving data specifying a machine learning model to be placed for distributed processing on multiple hardware devices; generating, from the data, a sequence of operation embeddings, each operation embedding in the sequence characterizing respective operations necessary to perform the processing of the machine learning model; processing the sequence of operation embeddings using a placement recurrent neural network in accordance with first values of a plurality network parameters of the placement recurrent neural network to generate a network output that defines a placement of the operations characterized by the operation embeddings in the sequence across the plurality of devices; and scheduling the machine learning model for processing by the multiple hardware devices by placing the operations on the multiple devices according to the placement defined by the network output.
-
-
-
-
-
-
-
-
-