Abstract:
Embodiments of the present invention provide a wireless communication method, base station and system. The base station includes several LED lights and/or several VLC/IR receivers. The several LED lights are configured to send downlink signals in an OFDMA standard to a user terminal, and the several VLC/IR receivers are configured to receive uplink signals that are of an SC-FDMA standard and sent by the user terminal. The base station further includes a baseband signal processing unit configured to equate the several LED lights and/or the several VLC/IR receivers with radio remote units of an LTE mode to perform processing and resource management. The embodiments of the present invention are capable of reusing baseband signal processing and resource management manners in an existing LTE system, thereby simplifying resource management and baseband signal processing operations performed by the base station, and saving the base station resources.
Abstract:
The present invention provides a new system structure of mobile cellular system based on layered cloud computing. A core network part of the system structure includes a CRG node, and an access network part includes an MC node and a DU node. The system structure proposed in the present invention is compatible with all conventional mobile air interface protocols, supports the layered cloud computing function, and is capable of providing joint signal processing and joint scheduling, flexibly allocating computing resources among nodes, and compressing the structure of the core network, so that larger network data throughput can be provided for users with lower deployment cost.
Abstract:
An embodiment of the present invention provides a data transmission method, which includes: receiving offloading control signaling sent by a user equipment, where the offloading control signaling carries a cellular network identifier and a wireless local area network WLAN identifier of the user equipment; establishing correspondence between the WLAN identifier of the user equipment and all bearer channels of the user equipment; determining a bearer channel corresponding to all or a part of the user data streams. Embodiments of the present invention further provide a corresponding device and system. Through the technical solutions of the embodiments of the present invention, a transmission rate of a system can be increased.
Abstract:
Embodiments of the present invention provide a method, an apparatus, and a system for processing an interference signal, so as to eliminate an interference signal in a full duplex multi-antenna system. The method includes: receiving a radio signal, where the signal includes a self-interference signal of a transmit antenna, and the self-interference signal includes a first self-interference signal, and a second self-interference signal; performing primary interference cancellation processing, by using a first reference signal, on the received signal to eliminate the first self-interference signal; and performing secondary interference cancellation processing, by using a second reference signal, on the signal after the primary interference cancellation processing to eliminate the second self-interference signal.
Abstract:
A method includes: demodulating a signal transmitted by a first source end that is received to obtain a first log-likelihood ratio; demodulating a signal transmitted by a second source end that is received to obtain a second log-likelihood ratio; demodulating a signal transmitted by a relay node that is received to obtain a third log-likelihood ratio; based on an exclusive OR feature of network coding, processing the first log-likelihood ratio, the second log-likelihood ratio, and the third log-likelihood ratio to obtain a posterior log-likelihood ratio of the first source end; and decoding the signal transmitted by the first source end that is received by using the posterior log-likelihood ratio of the first source end.
Abstract:
The present invention provides a new system structure of mobile cellular system based on layered cloud computing. A core network part of the system structure includes a CRG node, and an access network part includes an MC node and a DU node. The system structure proposed in the present invention is compatible with all conventional mobile air interface protocols, supports the layered cloud computing function, and is capable of providing joint signal processing and joint scheduling, flexibly allocating computing resources among nodes, and compressing the structure of the core network, so that larger network data throughput can be provided for users with lower deployment cost.
Abstract:
A method, system, and device for radio network aggregation are applied in communication technologies. The method for radio network aggregation transmission includes: obtaining location information of a user equipment on at least two radio networks; obtaining, according to the location information, network load information of each radio network where the user equipment is currently located; determining, according to the network load information and a preset policy, a way in which data streams of the user equipment are transmitted by using the at least two radio access technologies; and transmitting the data streams of the user equipment in the determined way. Thereby, radio network aggregation is implemented.
Abstract:
A method and device for acquiring a precoding matrix are provided by the present invention. The method for acquiring a precoding matrix includes: for each receiving end, selecting the interference vectors as the interference space basis vectors from whole interference vectors, representing the remaining interference vectors as the linear combination of the interference space basis vectors, wherein the remaining interference vectors are the interference vectors in the whole interference vectors of the receiving end except the interference vectors which act as the interference space basis vectors (101); determining the currently used precoding matrix according to the linear combination of the interference space basis vectors represented by the remaining interference vectors of each receiving end and the current channel condition (102). The technical solution of the present invention can eliminate interference and do not generate Bit Error Rate (BER) floor.
Abstract:
Embodiments of the present invention disclose an RRU, which performs IDFT on a PUSCH signal that is obtained after resource block demapping, where due to a characteristic of an extremely low peak to average power ratio of SC-FDMA modulation, a signal after IDFT has an extremely low peak to average power ratio at this time, and an amplitude range of the signal changes slightly; amplitude/phase conversion is performed on the signal after the IDFT, where the signal after the IDFT is represented by using amplitude and phase, and then amplitude quantization and phase quantization are performed respectively to obtain a quantized amplitude signal and a quantized phase signal respectively.
Abstract:
Embodiments of the present invention provide a method, an apparatus, and a system for signal transmission. The method includes: obtaining, by a base station, a high-power precoding matrix and a low-power precoding matrix according to channel quality information, precoding a corresponding high-power signal stream according to the high-power precoding matrix respectively to obtain a first signal stream, precoding a corresponding low-power signal stream according to the low-power precoding matrix respectively to obtain a second signal stream, superimposing the first signal stream and the second signal stream to obtain one or more superimposed signal streams and transmitting the one or more superimposed signal streams to user terminals; decoding, by the user terminals, the received one or more superimposed signal streams by using receiving matrices, and obtaining signal streams that the user terminals need. The embodiments of the present invention are applicable to signal transmission in a Multiple-Input Multiple-output system.