Abstract:
A machine vision vehicle wheel alignment system for acquiring measurements associated with a vehicle. The system includes at least one imaging sensor having a field of view and at least one optical target secured to a wheel assembly on a vehicle within the field of view of the imaging sensor. The optical target includes a plurality of visible target elements disposed on at least two surfaces in a determinable geometric and spatial configuration which are calibrated prior to use. A processing unit in the system is configured to receive at least two sets of image data from the imaging sensor, with each set of image data acquired at a different rotational position of the wheel assembly around an axis of rotation and representative of at least one visible target element on each of the two surfaces, from which the processing unit is configured to identify said axis of rotation of the wheel assembly.
Abstract:
A method and apparatus for utilizing a vehicle wheel alignment system to guide the placement and orientation of a vehicle service apparatus or alignment fixture relative to the thrust line of a vehicle. A laser adapter for projecting a reference line is mounted to a steerable wheel of the vehicle, and is aligned relative to both a line of the vehicle and to the supporting surface on which the vehicle is disposed. The vehicle line is determined by the vehicle wheel alignment system, and the steerable wheel, together with the adapter, are steered relative to the determined vehicle line, such that a projected reference line defined by the position and orientation of the adapter is established parallel to both the supporting surface and the vehicle line. The placement and orientation of the vehicle service apparatus or alignment fixture is subsequently adjusted relative to the projected reference line.
Abstract:
A support structure having a vertical element supporting a set of cameras associated with a vehicle measurement or inspection system together with at least one target structure required for realignment or recalibration of onboard vehicle safety system sensors. A camera crossbeam carried by the support structure locates the set of cameras as required to view a vehicle undergoing measurement or inspection. The target structure is affixed to the vertical element of the support structure, at an elevation suitable for observation by at least one vehicle onboard sensors during a realignment or recalibration procedure. A set of rollers facilitates positioning of the target structure on a supporting floor surface during a realignment or recalibration procedure.
Abstract:
A system and method for aligning a floor target relative to a vehicle, the floor target including a calibration pattern for observation by a vehicle safety system sensor during calibration. The system includes at least one optical projection system consisting of at least one optical projector having an orientable projection axis. The optical projection system is operatively controlled by a processor to orient said projection axis towards a selected location on the floor surface relative to the vehicle, and to activate the optical projected to illuminate a point, a line, or a boundary, against which the floor target is aligned.
Abstract:
A support structure having a vertical element supporting a set of cameras associated with a vehicle measurement or inspection system together with at least one target structure required for realignment or recalibration of onboard vehicle safety system sensors. A camera crossbeam carried by the support structure locates the set of cameras as required to view a vehicle undergoing measurement or inspection. The target structure is affixed to the vertical element of the support structure, at an elevation suitable for observation by at least one vehicle onboard sensors during a realignment or recalibration procedure. A set of rollers facilitates positioning of the target structure on a supporting floor surface during a realignment or recalibration procedure.
Abstract:
A support structure having a vertical element supporting a set of cameras associated with a vehicle measurement or inspection system together with at least one target structure required for realignment or recalibration of onboard vehicle safety system sensors. A camera crossbeam carried by the support structure locates the set of cameras as required to view a vehicle undergoing measurement or inspection. The target structure is affixed to the vertical element of the support structure, at an elevation suitable for observation by at least one vehicle onboard sensors during a realignment or recalibration procedure. A set of rollers facilitates positioning of the target structure on a supporting floor surface during a realignment or recalibration procedure.
Abstract:
A vehicle service system and method to determine spatial parameters of a vehicle, employing a display system under processor control, to display or project visible indicia onto surfaces in proximity to a vehicle undergoing a safety system service or inspection identifying one or more locations, relative to the determined vehicle centerline or thrust line, at which a calibration fixture, optical target, or simulated test drive imagery is visible for observation by a sensor onboard the vehicle.
Abstract:
A vehicle measurement station utilizing one or more displacement sensors disposed on each opposite side of an inspection region of a vehicle inspection lane to acquire displacement measurement data along associated measurement axes. At least a portion of the displacement measurement data is associated with the outermost wheel assemblies on an axle of a moving vehicle passing through the inspection region, and utilized to determine one or more vehicle characteristics, such as an axle total toe condition.
Abstract:
A vehicle measurement station utilizing one or more displacement sensors disposed on each opposite side of an inspection region of a vehicle inspection lane to acquire displacement measurement data along associated measurement axes. At least a portion of the displacement measurement data is associated with the outermost wheel assemblies on an axle of a moving vehicle passing through the inspection region, and utilized to determine one or more vehicle characteristics, such as an axle total toe condition.
Abstract:
A drive-over tire tread depth measurement system is configured with environmental protection components for preventing or impeding environmental contaminates from falling through openings in a vehicle support surface or cover plate onto underlying components such as sensor optical windows and adjacent surfaces. The environmental protection components may include air discharge assemblies, movable shields, guards, wipers or deflectors such as drip edges, water-accumulating textured surfaces, flow diverters, and selectively placed flanges or fixed guards which operate cooperatively to displace accumulated contaminates, debris, or liquids from the optical windows and adjacent sensor surfaces. A portion of the vehicle support surface or cover plate is removable to permit access to underlying components.