摘要:
An object detection apparatus acquires a first position based on a detection result of an object ahead of an own vehicle detected by an electromagnetic wave sensor and a second position based on a detection result of the object detected by an image sensor. When determined that the objects are a same object, the object detection apparatus corrects either of the first position and the second position such that the first position and the second position are positions of the object detected at a same time, based on a time difference between a first amount of time required for the electromagnetic wave sensor to detect the object and a second amount of time required for the image sensor to detect the object. Position information of the object is calculated using the first position and the corrected second position, or the second position and the corrected first position.
摘要:
A method of detecting direction errors of an object, applied to an in-vehicle radar apparatus, whereby in a first step, relative speeds of an object reflecting a continuous wave are obtained by executing frequency analysis of signals acquired by transmitting and receiving the continuous wave. In a second step estimated directions, which are values of estimated directions in which the object is present, are calculated for each of respective frequency bins in which the presence of the object has been confirmed by the frequency analysis executed in the first step. In a third step a theoretical curve is calculated which expresses a relationship between relative speed of a stationary object and directions in which the stationary object is present, with respect to the own vehicle. In a fourth step, the direction errors are obtained as errors of the estimated directions with respect to the theoretical curve.
摘要:
In accordance with one embodiment, a radar system with auto-alignment suitable for use in an automated vehicle is provided. The system includes a radar-sensor, a speed-sensor, and a controller. The radar-sensor is used to detect objects present in a field-of-view proximate to a host-vehicle on which the radar-sensor is mounted. The radar-sensor is operable to determine a measured-range-rate (dRm), a measured-azimuth-angle (Am), and a measured-elevation-angle (Em) to each of at least three objects present in the field-of-view. The speed-sensor is used to determine a measured-speed (Sm) of the host-vehicle. The controller is in communication with the radar-sensor and the speed-sensor. The controller is configured to simultaneously determine a speed-scaling-error (Bs) of the measured-speed, an azimuth-misalignment (Ba) of the radar-sensor, and an elevation-misalignment (Be) of the radar-sensor based on the measured-range-rate, the measured-azimuth-angle, and the measured-elevation-angle to each of the at least three objects, while the host-vehicle is moving.
摘要:
A radar apparatus mounted on a moving body includes a signal transceiver that receives one or more radar signals reflected by one or more second reflection points of one or more targets located in a scan range with a plurality of antennas, detection circuitry that detects an azimuth angle of the one or more second reflection points of the one or more targets on the basis of a correspondence between a phase difference among the plurality of antennas and an azimuth angle and a phase difference observed in the scan range among the plurality of antennas, calculation circuitry that selects the one or more second reflection points located in a second range that differs from a first range including a central axis on which the phase difference among the antennas is zero and calculates a second azimuth angle error, and correction circuitry that corrects the correspondence.
摘要:
Example embodiments disclosed herein relate to receiving, using a computer system in a vehicle, ground truth data that relates to a current state of the vehicle in an environment. A plurality of sensors may be coupled to the vehicle and controlled by a plurality of parameters. The vehicle may be configured to operate in an autonomous mode in which the computer system controls the vehicle in the autonomous mode based on data obtained by the plurality of sensors. The example embodiments also relate to obtaining perceived environment data that relates to the current state of the vehicle in the environment as perceived by at least one of the plurality of sensors, comparing the perceived environment data to the ground truth data, and adjusting one or more of the plurality of parameters based on the comparison.
摘要:
A system and method are provided and include a subject vehicle having a sensor that senses information about an environment of the subject vehicle. An actuator rotates the sensor according to a commanded angle. A controller determines a position and a trajectory path of the subject vehicle, determines an adaptive point along the determined trajectory path based on the position, and generates the commanded angle for the actuator to rotate the sensor towards the adaptive point.
摘要:
A first specifying-means specifies a first-region including a first detection-point, which is of a first-target on an X-Y plane on which a width direction of a vehicle is defined as an X-axis, and a longitudinal direction of the vehicle is defined as a Y-axis. A second specifying-means specifies a second-region including a second detection-point, which is of a second-target on the X-Y plane, based on a direction of the second detection-point and a target-width, which is a width along the X-axis of the second-target. A determination means determines that the first- and second-targets are the same, provided that an overlapping portion exists therebetween. An estimation means estimates a true-value target-width, based on the direction of the second detection-point and the first detection-point, provided that the first- and second-targets are the same. A correction-means corrects a position of the second-region specified next time by using the true-value target-width as the target-width.
摘要:
A sensor assembly is described for driver assistance systems in motor vehicles, having a radar sensor and a video camera, in which the radar sensor and the video camera are integrated into a common housing.
摘要:
A method and system for aligning a sensor of a radar unit mounted on a vehicle, including calculating at least one alignment measurement of the vehicle from a plurality of optical sensors, positioning a target at a predetermined distance forward of the radar unit and determining a position of the radar unit based on the alignment measurement and the predetermined distance of the target. The method further includes transmitting a beam extending forward from the radar unit and positioning the target and the sensor in alignment with an axis of the beam.
摘要:
A method and apparatus for utilizing a vehicle wheel alignment system to guide the placement and orientation of a vehicle service apparatus or alignment fixture relative to the thrust line of a vehicle. A laser adapter for projecting a reference line is mounted to a steerable wheel of the vehicle, and is aligned relative to both a line of the vehicle and to the supporting surface on which the vehicle is disposed. The vehicle line is determined by the vehicle wheel alignment system, and the steerable wheel, together with the adapter, are steered relative to the determined vehicle line, such that a projected reference line defined by the position and orientation of the adapter is established parallel to both the supporting surface and the vehicle line. The placement and orientation of the vehicle service apparatus or alignment fixture is subsequently adjusted relative to the projected reference line.