Abstract:
A cooling water heating apparatus includes: a housing having an inlet through which cooling water flows in at a first side and an outlet through which cooling water flows out at a second side; a sheath heater housed in the housing and electrically connected to an outside through an electric circuit to heat the cooling water in the housing; and an overheat preventing device housed in the housing to be submerged under the cooling water in an upper side of the housing in a gravity direction, the overheat preventing device having a positive temperature coefficient (PTC) device connected in series to the electric circuit of the sheath heater to allow the PTC device to control energization of the sheath heater.
Abstract:
A coolant heating apparatus for an electric vehicle includes a sheath heater formed in a coil form at a center side of the coolant heating apparatus; one or more inner tubes, one of which has an inlet formed at one side thereof for introduction of coolant, the one or more inner tubes being arranged to surround the sheath heater or to be surrounded by the sheath heater, and the one or more inner tubes having a plurality of through-holes formed on respective outer peripheral surfaces thereof so that the coolant introduced into the inlet is discharged through the through-holes; and an outer tube surrounding the sheath heater and the one or more inner tubes and having an outlet formed at one side thereof so that the coolant heated by the sheath heater is introduced through the through-holes of the one or more inner tubes and is discharged through the outlet.
Abstract:
A heating, ventilation, and air conditioning (HVAC) system for a vehicle, may include external air cooling line configured to circulate first cooling water through a first radiator, a main valve and a high-voltage battery core, a cooling/heating line having a first end branching from the main valve and a second end connected to a downstream point of the high-voltage battery core, the cooling/heating line being configured to enable the high-voltage battery core to be heated or cooled by a heat exchanger or an electric heater, and a controller configured to selectively control at least one of the main value, the heat exchanger and the electric heater to cause the first cooling water to circulate through the external air cooling line or the cooling/heating line to perform heat transfer in the heat exchanger or the electric heater when cooling or heating of the high-voltage battery core is needed.
Abstract:
Disclosed herein is a moisture electrolysis apparatus for a headlamp including: a first electrode configured to be exposed in an inside space of a headlamp housing, and have a surface coated with a dielectric substance; a second electrode configured to be disposed to be spaced apart from the first electrode by a predetermined distance; and a discharge ventilation path configured to be formed between the surface of the first electrode coated with the dielectric substance and the second electrode.
Abstract:
Disclosed is a steering wheel having cooling system inside. A steering wheel includes a hub connected to a steering column, a rim provided with a hollow formed therein and spokes configured to connect the hub and the rim. Cooling units located at the hub or the spokes of the steering wheel is provided to supply cooling air. Heat pipes thermally connect the cooling units and the rim of the steering wheel.
Abstract:
A device for sterilizing an evaporator core of an air conditioning system includes a sterilizer is mounted at a front end of the eva core for sterilization and deodorization of the eva core. The sterilizer is mounted at one side of a wall surface of an air channel formed between a blower which blows air toward the eva core and the eva core to prevent an air volume of an air channel from being reduced.