摘要:
A solid electrolytic capacitor includes a capacitor element having a niobium oxide layer arranged between an anode and a cathode, and an outer package covering the capacitor element. The niobium oxide layer contains fluorine and phosphorus, and the outer package contains epoxy resin, phenol resin, filler and an imidazole compound.
摘要:
A solid electrolytic capacitor comprises an anode formed of at least one metal selected from tantalum, niobium, titanium and tungsten, and a dielectric layer, an electrolytic layer and a cathode disposed on the anode, wherein the cathode comprises a mixed layer containing a first material consisting of silver particles having an average particle diameter (median diameter) of not less than 2 μm, a second material consisting of conducting carbon particles and/or silver particles having an average particle diameter (median diameter) of 1 μm or less and a binding agent.
摘要:
A solid electrolytic capacitor comprising: an anode of valve metals or alloy of which main component is valve metals; a dielectric layer formed by anodizing the anode; and a cathode formed on the dielectric layer, wherein the dielectric layer comprises a first dielectric layer located on the anode side and a second dielectric layer formed on the first dielectric layer, and oxygen concentration of the second dielectric layer is decreased from the first dielectric layer side toward the cathode side.
摘要:
A solid electrolytic capacitor comprising: an anode of valve metals or alloy of which main component is valve metals; a dielectric layer formed by anodizing the anode; and a cathode formed on the dielectric layer, wherein the dielectric layer comprises a first dielectric layer located on the anode side and a second dielectric layer formed on the first dielectric layer, and oxygen concentration of the second dielectric layer is decreased from the first dielectric layer side toward the cathode side.
摘要:
Solid electrolytic capacitors are provided with decreased equivalent series resistance (ESR). The solid electrolytic capacitors include: an anode containing a valve metal or an alloy that is mainly made of a valve metal; a dielectric layer formed on a surface of the anode; an electrolyte layer formed on the dielectric layer; a carbon layer formed on the electrolyte layer; and a silver paste layer formed on the carbon layer, wherein the silver paste layer contains a nonionic surfactant.
摘要:
Solid electrolytic capacitors are provided with decreased equivalent series resistance (ESR). The solid electrolytic capacitors include: an anode containing a valve metal or an alloy that is mainly made of a valve metal; a dielectric layer formed on a surface of the anode; an electrolyte layer formed on the dielectric layer; a carbon layer formed on the electrolyte layer; and a silver paste layer formed on the carbon layer, wherein the silver paste layer contains a nonionic surfactant.
摘要:
A solid electrolytic capacitor, having a small equivalent series resistance, is formed by burying a capacitor element inside an epoxy resin outer package. The capacitor element includes an anode, having part of an anode lead buried therein, a dielectric layer formed on the anode and containing a niobium oxide, and a cathode formed on the dielectric layer. The cathode includes a first electrolyte layer containing a conductive polymer and formed on the dielectric layer, an intermediate layer containing an organic silane and formed on the first electrolyte layer, a second electrolyte layer containing a conductive polymer and formed on the intermediate layer, a first conductive layer containing carbon particles and formed on the second electrolyte layer, and a second conductive layer containing silver particles and formed on the first conductive layer.
摘要:
A capacitor element comprises an anode, a dielectric layer formed on the anode, an electrolyte layer formed on the dielectric layer, and a cathode formed on the electrolyte layer. On the cathode formed by the surface of the capacitor element, a conductive adhesive layer containing silver particles and an organic silane layer made from aminopropyltriethoxysilane (APTES) are sequentially formed, and the cathode and a cathode terminal are connected through the conductive adhesive layer and the organic silane layer. In addition, an anode terminal is connected to an anode lead which exposed from the anode by welding.
摘要:
The present invention is to provide a solid electrolytic capacitor having a small equivalent series resistance. In this solid electrolytic capacitor, a capacitor element is buried inside of an outer package of an epoxy resin or the like, the capacitor element including an anode in which a part of an anode lead is buried, a dielectric layer which is formed on the anode and contains a niobium oxide and a cathode which is formed on the dielectric layer. The cathode includes a first electrolyte layer which is formed on the dielectric layer and contains a conductive polymer, an intermediate layer which is formed on the first electrolyte layer and contains organic silane, a second electrolyte layer which is formed on the intermediate layer and contains a conductive polymer, a first conductive layer which is formed on the second electrolyte layer and contains carbon particles and a second conductive layer which is formed on the first conductive layer and contains silver particles. Also, one end of a cathode terminal is connected with the cathode through a third conductive layer containing silver particles. Also, each of the other ends of an anode terminal and cathode terminal is exposed from the outer package.
摘要:
The present invention provides an electrolytic capacitor having a large electrostatic capacity.In the solid electrolytic capacitor, a capacitor element provided with; an anode in which a part of an anode lead is embedded in the inside of an outer package made of an epoxy resin or the like; an oxide layer containing niobium oxide formed on the anode; and a cathode formed on the oxide layer; is embedded. The anode lead is composed of a niobium alloy containing at least one of vanadium and zirconium, and its one end is embedded in the anode composed of a porous sintered body of metal particles containing niobium, and the other end is connected to an anode terminal. The cathode is composed of a conductive polymer layer such as polypyrrole, a first conductive layer containing carbon particles, and a second conductive layer containing silver particles, and one end of a cathode terminal is connected to the cathode via a third conductive layer containing silver particles. Further, each other end of the anode terminal and the cathode terminal is projected out of an outer package.