Abstract:
A method includes: mapping, by a base station, N reference signals to a specified time-frequency resource; and transmitting, by the base station, a reference signal on the specified time-frequency resource to user equipment, where for any PRB, the specified time-frequency resource includes a first OFDM symbol in a data region in time domain; where the PRB includes a type-1 control channel and the data region, the data region includes a type-2 control channel and a data channel, the type-1 control channel includes first m OFDM symbols of the PRB in time domain, and the data region includes OFDM symbols other than the type-1 control channel in the PRB in time domain; and the type-2 control channel includes first n OFDM symbols in the data region in time domain, and the data channel includes OFDM symbols other than the type-2 control channel in the data region in time domain.
Abstract:
Embodiments of the present disclosure relate to the field of communications technologies, and provide an information transmission method and apparatus, to flexibly set a quantity of subframes in subframe aggregation and a redundancy version based on a channel condition. The method includes: sending, by a first device, downlink control information to a second device, where the downlink control information includes subframe aggregation information, and the subframe aggregation information is used by the first device to indicate, to the second device, a quantity of subframes used in subframe aggregation and/or a redundancy version corresponding to at least one of subframes used in subframe aggregation; and receiving, by the first device, uplink information sent by the second device according to the downlink control information. The embodiments of the present disclosure are used for subframe aggregation.
Abstract:
A method for transmitting and receiving Uplink Control Information (UCI), a terminal, and a base station are provided. The transmitting method includes: calculating the number (Q′) of modulation symbols occupied by the UCI to be transmitted; dividing the information bit sequence of the UCI to be transmitted into two parts; using Reed Muller (RM) (32, 0) codes to encode each part of information bit sequence of the UCI to be transmitted to obtain a 32-bit coded bit sequence respectively, and performing rate matching so that the rate of the first 32-bit coded bit sequence ┌Q′/2┐×Qm bits and that the rate of the second 32-bit boded bit sequence is (Q′−┌Q′/2┐)×Qm bits; and mapping the two parts of coded bit sequences that have undergone rate matching onto a Public Uplink Shared Channel (PUSCH), and transmitting the coded bit sequences to a base station.
Abstract:
A method and an apparatus for implementing channel measurement are disclosed in the present invention. The method includes: determining an antenna port subset, which is required to be measured, for a UE according to current state information of the user equipment UE; and informing the UE to perform channel measurement for the subset of antenna ports that is required to be measured and feed back channel state information. Through the present invention, when the state information of the UE meets a certain condition, the UE measures only the reference signals of a part of antenna ports, and feeds back channel state information for this part of antenna ports. Therefore, the overhead generated by the feedback of the UE to the channel state information is reduced.
Abstract:
Disclosed is a method and an apparatus for transmitting acknowledgement information. The apparatus includes: a transmission module, configured to transmit, in a secondary serving cell, a PDSCH to a UE; a determining module, configured to determine an HARQ time sequence relationship corresponding to the secondary serving cell, where the HARQ time sequence relationship is an HARQ time sequence relationship between the PDSCH and an HARQ; and a receiving module, configured to receive, in a primary serving cell according to the HARQ time sequence relationship determined by the determining module, the HARQ-ACK corresponding to the PDSCH. The primary serving cell is a TDD primary serving cell configured by a base station for the UE, the secondary serving cell is a secondary serving cell in N TDD secondary serving cells configured by the base station for the UE, and N is a natural number that is greater than or equal to 1.
Abstract:
A method, an apparatus, and a system for transmitting information bits, where the method for transmitting information bits includes: dividing the information bits to be transmitted into at least two groups; encoding the information bits to be transmitted in each group; modulating the coded bits obtained by the encoding to obtain modulation symbols, in which each modulation symbol is obtained by using the modulation of the coded bits in the same group; and mapping and transmitting the modulation symbols. In this way, the receiving end easily reduces the algorithm complexity, thereby ensuring the performance of the receiving end.
Abstract:
Embodiments of the present disclosure provide a data transmission method, a base station and user equipment. The method includes: sending, by a first base station, first information to a second base station, or receiving, by the first base station, the first information sent by the second base station, wherein the first information is used for indicating that the second base station is to serve user equipment; sending, by the first base station, second information to the user equipment, wherein the second information is used for instructing the user equipment to operate on a carrier corresponding to the second base station, for enabling the user equipment to operate on the carrier corresponding to the second base station. By adopting the embodiments of the present disclosure, the probability of wrong scheduling of high-capacity user equipment is reduced, and the performance loss caused by wrong scheduling is avoided.
Abstract:
The embodiment of the present invention relates to a method and an apparatus for transmitting a scheduling request, wherein the method for transmitting the scheduling request comprises: determining, by a user equipment, physical uplink control channel resources for transmitting scheduling request information based on a received scheduling request configuration, wherein the scheduling request information is used for requesting a base station for uplink resources by the user equipment; and transmitting, by the user equipment, the scheduling request information on the determined physical uplink control channel resources. The embodiment of the present invention may solve the problem of how to transmit the scheduling request information under the scenario of MSA through the scheduling request configuration, content identity of the scheduling request information, a combination thereof and the like, so that time from which uplink data is served may be prevented from being delayed, thereby improving user experience.
Abstract:
Embodiments of the present invention provide a channel-state information process processing method, a network device, and a user equipment, where the channel-state information process processing method includes: after receiving a first channel-state information CSI request sent by a first network device, if CSI corresponding to multiple aperiodic CSI processes has not been reported by a user equipment, dropping CSI corresponding to a part of aperiodic CSI processes among the multiple aperiodic CSI processes, where each CSI process is associated with a channel measurement resource and an interference measurement resource. A problem existing after a CoMP technology is introduced can be solved that the UE cannot implement processing of multiple CSI processes.
Abstract:
Embodiments of the present application provide a method for transmitting control information, a user equipment and a base station. The method includes: acquiring a resource index of a physical uplink control channel PUCCH; acquiring a sequence index of an orthogonal sequence of the PUCCH according to the resource index, and acquiring the orthogonal sequence according to the sequence index; acquiring a cyclic shift of a reference signal of the PUCCH according to the sequence index; and transmitting the UCI to the base station on the PUCCH according to the orthogonal sequence and the cyclic shift. In the embodiments of the present application, a cyclic shift of a reference signal of a PUCCH channel for transmitting UCI is acquired according to a sequence index, and the UCI is transmitted on the PUCCH according to the cyclic shift and a corresponding orthogonal sequence, which can enhance transmission performance of the UCI.