摘要:
A thin film transistor (TFT) includes a substrate, a transparent semiconductor layer on the substrate, the transparent semiconductor layer including zinc oxide and exhibiting a charge concentration of about 1×1014 atom/cm3 to about 1×1017 atom/cm3, a gate electrode on the substrate, a gate insulating layer between the gate electrode and the transparent semiconductor layer, the gate insulting layer insulating the gate electrode from the transparent semiconductor layer, and source and drain electrodes on the substrate, the source and drain electrodes being in contact with the transparent semiconductor layer.
摘要翻译:薄膜晶体管(TFT)包括衬底,衬底上的透明半导体层,包含氧化锌的透明半导体层,其电荷浓度为约1×10 14原子/ cm 3至约1×10 17原子/ cm 3,衬底上的栅电极 栅电极和透明半导体层之间的栅极绝缘层,栅极电极与透明半导体层绝缘的栅极绝缘层以及衬底上的源极和漏极,源极和漏极与透明半导体接触 层。
摘要:
An organic light emitting display (OLED), which includes a display unit and a controlling unit, is provided. The display unit includes an organic light emission layer and a transparent thin film transistor (TFT) to drive the organic light emission layer, and the display unit emits light into two opposite surfaces (upper and lower surfaces). The controlling unit includes an electro-optical layer that is capable of being switched from one state to another state by applying voltage to the layer. The controlling unit controls transmission of light emitted from the display unit. Therefore the flat panel display of the present invention is capable of displaying an image in one surface or in two surfaces. The selection of surface of image display can be manually or automatically controlled by a user. The controlling unit can includes a liquid crystal device, an electrophoretic device, or an electrochromic device.
摘要:
A transparent thin film transistor (TFT) and a method of fabricating the same are provided. The transparent TFT includes transparent source and drain electrodes formed of transparent material, a transparent semiconductor activation layer that contacts the source and drain electrodes, that is formed of transparent semiconductor, and in which source and drain regions are formed, and a doping section provided between the transparent source and drain electrodes and the transparent activation layer to have the same doping type as that of the source and drain regions and to have doping concentration different from that of the source and drain regions. At this time, doping during the formation of the doping section is performed by an in-situ method in which a gas containing impurities is sprayed in the same apparatus as the apparatus used for the previous step. Therefore, it is possible to reduce high contact resistance generated when the transparent semiconductor activation layer contacts the transparent electrodes and to thus form ohmic contact.
摘要:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
摘要:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include a gate electrode formed on a substrate; an active layer made of an oxide semiconductor and insulated from the gate electrode by a gate insulating layer; source and drain electrodes coupled to the active layer; and an interfacial stability layer formed on one or both surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristic as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
摘要:
A thin film transistor (TFT), including a substrate, a gate electrode on the substrate, an oxide semiconductor layer including a channel region, a source region, and a drain region, a gate insulating layer between the gate electrode and the oxide semiconductor layer, and source and drain electrodes in contact with the source and drain regions of the oxide semiconductor layer, respectively, wherein the oxide semiconductor layer has a GaInZnO (GIZO) bilayer structure including a lower layer and an upper layer, and the upper layer has a different indium (In) concentration than the lower layer.
摘要:
An oxide semiconductor thin film transistor and a flat panel display device incorporating the same oxide semiconductor thin film transistor. The thin film transistor includes a gate electrode formed on the substrate, a gate insulating layer formed on the substrate and covering the gate electrode, an oxide semiconductor layer formed on the gate insulating layer and covering the gate electrode, a titanium layer formed in a source region and a drain region of the oxide semiconductor layer, and source and drain electrodes respectively coupled to the source region and the drain region through the titanium layer and made of copper. The titanium layer reduces the contact resistance between the source and drain electrodes made of copper and the oxide semiconductor layer, forms a stable interface junction therebetween, and blocks a diffusion of copper.
摘要:
Disclosed is an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes the thin film transistor of the drive unit that has the activation layer formed in a structure where the first oxide semiconductor layer and the second oxide semiconductor layer are stacked, the thin film transistor of the pixel unit that has the activation layer formed of the second oxide semiconductor layer, and the organic light emitting diode coupled to the thin film transistor of the pixel unit. The thin film transistor of the drive unit has channel formed on the first oxide semiconductor layer having a higher carrier concentration than the second oxide semiconductor layer, having a high charge mobility, and the thin film transistor of the pixel unit has a channel formed on the second oxide semiconductor layer, having a stable and uniform functional property.
摘要:
An organic light emitting display (OLED), which includes a display unit and a controlling unit, is provided. The display unit includes an organic light emission layer and a transparent thin film transistor (TFT) to drive the organic light emission layer, and the display unit emits light into two opposite surfaces (upper and lower surfaces). The controlling unit includes an electro-optical layer that is capable of being switched from one state to another state by applying voltage to the layer. The controlling unit controls transmission of light emitted from the display unit. Therefore the flat panel display of the present invention is capable of displaying an image in one surface or in two surfaces. The selection of surface of image display can be manually or automatically controlled by a user. The controlling unit can includes a liquid crystal device, an electrophoretic device, or an electrochromic device.
摘要:
A flat panel display that can prevent a voltage drop of a driving power and, at the same time, minimizes the characteristic reduction of electronic devices located in a circuit region where various circuit devices are located includes: a substrate; an insulating film arranged on the substrate; a pixel region including at least one light emitting diode, the pixel region arranged on the insulating film and adapted to display an image; a circuit region arranged on the insulating film and including electronic devices adapted to control signals supplied to the pixel region; and a conductive film interposed between the substrate and the insulating film in a region corresponding to the pixel region and electrically connected to one electrode of the light emitting diode.