摘要:
An oxide semiconductor thin film transistor and a flat panel display device incorporating the same oxide semiconductor thin film transistor. The thin film transistor includes a gate electrode formed on the substrate, a gate insulating layer formed on the substrate and covering the gate electrode, an oxide semiconductor layer formed on the gate insulating layer and covering the gate electrode, a titanium layer formed in a source region and a drain region of the oxide semiconductor layer, and source and drain electrodes respectively coupled to the source region and the drain region through the titanium layer and made of copper. The titanium layer reduces the contact resistance between the source and drain electrodes made of copper and the oxide semiconductor layer, forms a stable interface junction therebetween, and blocks a diffusion of copper.
摘要:
An oxide semiconductor thin film transistor and a flat panel display device incorporating the same oxide semiconductor thin film transistor. The thin film transistor includes a gate electrode formed on the substrate, a gate insulating layer formed on the substrate and covering the gate electrode, an oxide semiconductor layer formed on the gate insulating layer and covering the gate electrode, a titanium layer formed in a source region and a drain region of the oxide semiconductor layer, and source and drain electrodes respectively coupled to the source region and the drain region through the titanium layer and made of copper. The titanium layer reduces the contact resistance between the source and drain electrodes made of copper and the oxide semiconductor layer, forms a stable interface junction therebetween, and blocks a diffusion of copper.
摘要:
Disclosed is an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes the thin film transistor of the drive unit that has the activation layer formed in a structure where the first oxide semiconductor layer and the second oxide semiconductor layer are stacked, the thin film transistor of the pixel unit that has the activation layer formed of the second oxide semiconductor layer, and the organic light emitting diode coupled to the thin film transistor of the pixel unit. The thin film transistor of the drive unit has channel formed on the first oxide semiconductor layer having a higher carrier concentration than the second oxide semiconductor layer, having a high charge mobility, and the thin film transistor of the pixel unit has a channel formed on the second oxide semiconductor layer, having a stable and uniform functional property.
摘要:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
摘要:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
摘要:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
摘要:
Disclosed is an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes the thin film transistor of the drive unit that has the activation layer formed in a structure where the first oxide semiconductor layer and the second oxide semiconductor layer are stacked, the thin film transistor of the pixel unit that has the activation layer formed of the second oxide semiconductor layer, and the organic light emitting diode coupled to the thin film transistor of the pixel unit. The thin film transistor of the drive unit has channel formed on the first oxide semiconductor layer having a higher carrier concentration than the second oxide semiconductor layer, having a high charge mobility, and the thin film transistor of the pixel unit has a channel formed on the second oxide semiconductor layer, having a stable and uniform functional property.
摘要:
An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. Additionally disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.
摘要:
An organic light emitting display device including a plurality of scan lines arranged in a first direction, a plurality of data lines arranged in a second direction, the plurality of data lines intersecting with the plurality of scan lines, and pixels respectively disposed at intersection portions of the scan and data lines, each pixel including at least one thin film transistor (TFT) and an organic light emitting diode, wherein the TFT is an oxide TFT, the oxide TFT including a first oxide semiconductor layer as an active layer, and a second oxide semiconductor layer is disposed between intersecting scan and data lines.
摘要:
An organic light emitting display device including a plurality of scan lines arranged in a first direction, a plurality of data lines arranged in a second direction, the plurality of data lines intersecting with the plurality of scan lines, and pixels respectively disposed at intersection portions of the scan and data lines, each pixel including at least one thin film transistor (TFT) and an organic light emitting diode, wherein the TFT is an oxide TFT, the oxide TFT including a first oxide semiconductor layer as an active layer, and a second oxide semiconductor layer is disposed between intersecting scan and data lines.