Abstract:
Provided are an organic electroluminescence device having high current efficiency and a long lifetime, and a biscarbazole derivative for realizing the device. The biscarbazole derivative has a specific substituent. The organic EL device has a plurality of organic thin-film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin-film layers contains the biscarbazole derivative.
Abstract:
A biscarbazole derivative of the invention is represented by a formula (1) below. In the formula (1): A1 represents a substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms; A2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms; X1 and X2 each are a linking group; Y1 to Y4 each represent a substituent; p and q represent an integer of 1 to 4; and r and s represent an integer of 1 to 3.
Abstract:
An organic electroluminescence device (1) includes: an anode (3); a cathode (4); and an organic thin-film layer (10) interposed between the anode (3) and the cathode (4). The organic thin-film layer (10) includes a phosphorescent-emitting layer (5) containing a host and a phosphorescent dopant. The host contains a first host and a second host. The first host includes a substituted or unsubstituted polycyclic fused aromatic skeleton, the skeleton having 10 to 30 ring-forming atoms not including an atom of a substituent. The second host has an affinity level greater than the affinity level of the first host.
Abstract:
An organic electroluminescence device 1 includes: an anode 3, a cathode 4 opposed to the anode 3 and an emitting layer 5 provided between the anode 3 and the cathode 4. The emitting layer 5 contains first and second host materials and a luminescent material. The first host material has a partial structure represented by at least one of the following formulae (1) and (2) while the second host material has a partial structure represented by the following formula (3). Az represents a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen-containing six-membered ring. WCN is an aromatic hydrocarbon group substituted by at least one cyano group (CN) or an aromatic heterocyclic group substituted by at least one cyano group (CN). Ar1 is a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group, but is not an aromatic heterocyclic group containing a nitrogen-containing six-membered ring. —Az—(WCN)p (1) —Az—(CN)q (2) —Ar1—(CN)r (3)
Abstract:
Provided are an organic electroluminescence device, which shows high luminous efficiency, is free of any pixel defect, and has a long lifetime, and a material for an organic electroluminescence device for realizing the device. The material for an organic electroluminescence device is a compound having a π-conjugated heteroacene skeleton crosslinked with a carbon atom, nitrogen atom, oxygen atom, or sulfur atom. The organic electroluminescence device has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin film layers contains the material for an organic electroluminescence device.
Abstract:
A novel carbazole derivative represented by formula (1) in which two or more groups each having a specific structure, such as a carbazolyl group, are bonded to two or more of 2-, 3- and 4-positions of the carbazole derivative is useful as a material for organic electroluminescence devices. A material for organic electroluminescence devices including the carbazole derivative, an organic electroluminescence device employing the carbazole derivative, and an electronic equipment are described. wherein at least two selected from B1 to B3 are represented by formula (2) and A, X1 to X4, L, n, Y, and R1 to R8 are as defined in claim 1.
Abstract:
Provided are an organic electroluminescence device, which shows high luminous efficiency, is free of any pixel defect, and has a long lifetime, and a material for an organic electroluminescence device for realizing the device. The material for an organic electroluminescence device is a compound having a π-conjugated heteroacene skeleton crosslinked with a carbon atom, nitrogen atom, oxygen atom, or sulfur atom. The organic electroluminescence device has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin film layers contains the material for an organic electroluminescence device.
Abstract:
An organic electroluminescence device according of the invention includes an anode, a cathode, and at least a first emitting layer and a second emitting layer interposed between the anode and the cathode. The first emitting layer includes a first host material and a first dopant material. The second emitting layer includes a second host material, a third host material and a second dopant material.
Abstract:
A heteroarene derivative including a nitrogen-boron coordinate bond, represented by the following formula (1). In the formula (1). Z1 is a group represented by the following formula (2); Z2 is a substituted or unsubstituted aryl group including 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroaryl group including 5 to 30 ring atoms; L is a substituted or unsubstituted arylene including 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroarylene including 5 to 30 ring atoms, —O—, —S—, —(CR2R3)n— (wherein n is an integer of 1 to 8).