Abstract:
In one embodiment, a processor comprises a first neuro-synaptic core comprising first circuitry to configure the first neuro-synaptic core as a neuron core responsive to a first value specified by a configuration parameter; and configure the first neuro-synaptic core as a synapse core responsive to a second value specified by the configuration parameter.
Abstract:
A packet-switched reservation request to be associated with a first data stream is received. A communication mode is selected. The communication mode is to be either a circuit-switched mode or a packet-switched mode. At least a portion of the first data stream is communicated in accordance with the communication mode.
Abstract:
A router of a network-on-chip receives delay information associated with a plurality of links of the network-on-chip. The router determines at least one link of a data path based on the delay information.
Abstract:
A first packet-switched reservation request is received. Data associated with the first packet-switched reservation request is communicated through a first circuit-switched channel according to a best effort communication scheme. A second packet-switched reservation request is received. Data associated with the second packet-switched reservation request is communicated through a second circuit-switched channel according to a guaranteed throughput communication scheme.
Abstract:
An apparatus includes a first port set that includes an input port and an output port. The apparatus further includes a plurality of second port sets. Each of the second port sets includes an input port coupled to the output port of the first port set and an output port coupled to the input port of the first port set. The plurality of second port sets are to each communicate at a first maximum bandwidth and the first port set is to communicate at a second maximum bandwidth that is higher than the first maximum bandwidth.
Abstract:
An apparatus includes a first port set that includes an input port and an output port. The apparatus further includes a plurality of second port sets. Each of the second port sets includes an input port coupled to the output port of the first port set and an output port coupled to the input port of the first port set. The plurality of second port sets are to each communicate at a first maximum bandwidth and the first port set is to communicate at a second maximum bandwidth that is higher than the first maximum bandwidth.
Abstract:
An apparatus is formed. The apparatus includes a stack of semiconductor chips. The stack of semiconductor chips includes a logic chip and a memory stack, wherein, the logic chip includes at least one of a GPU and CPU. The apparatus also includes a semiconductor chip substrate. The stack of semiconductor chips are mounted on the semiconductor chip substrate. At least one other logic chip is mounted on the semiconductor chip substrate. The semiconductor chip substrate includes wiring to interconnect the stack of semiconductor chips to the at least one other logic chip.
Abstract:
Examples described herein relate to a neural network whose weights from a matrix are selected from a set of weights stored in a memory on-chip with a processing engine for generating multiply and carry operations. The number of weights in the set of weights stored in the memory can be less than a number of weights in the matrix thereby reducing an amount of memory used to store weights in a matrix. The weights in the memory can be generated in training using gradients from back propagation. Weights in the memory can be selected using a tabulation hash calculation on entries in a table.
Abstract:
An apparatus includes a first port set that includes an input port and an output port. The apparatus further includes a plurality of second port sets. Each of the second port sets includes an input port coupled to the output port of the first port set and an output port coupled to the input port of the first port set. The plurality of second port sets are to each communicate at a first maximum bandwidth and the first port set is to communicate at a second maximum bandwidth that is higher than the first maximum bandwidth.
Abstract:
A memory circuit includes a number (X) of multiply-accumulate (MAC) circuits that are dynamically configurable. The MAC circuits can either compute an output based on computations of X elements of the input vector with the weight vector, or to compute the output based on computations of a single element of the input vector with the weight vector, with each element having a one bit or multibit length. A first memory can hold the input vector having a width of X elements and a second memory can store the weight vector. The MAC circuits include a MAC array on chip with the first memory.