Abstract:
Embodiments described herein enable a hierarchical-Z unit of a graphics processor to be primed using Hi-Z data generated by occlusion culling operations performed on a general purpose processor. One embodiment provides for instructions to cause operations including performing occlusion culling for a scene via the general purpose processor and storing generated hierarchical-Z data. The Hierarchical-Z data generated during the occlusion culling operations can be shared with the graphics processor and used to prime a hierarchical-Z unit of the graphics processor. The at least a portion of the scene can then be rendered using the hierarchical-Z data after priming the hierarchical-Z unit, improving the effectiveness of hierarchical-Z operations of the graphics processor for the scene.
Abstract:
Real-time light field reconstruction for defocus blur may be used to handle the case of simultaneous defocus and motion blur. By carefully introducing a few approximations, a very efficient sheared reconstruction filter is derived, which produces high quality images even for a very low number of input samples in some embodiments. The algorithm may be temporally robust, and is about two orders of magnitude faster than previous work, making it suitable for both real-time rendering and as a post-processing pass for high quality rendering in some embodiments.
Abstract:
Efficient overlap tests between a screen space tile and a moving triangle with per-vertex motion following Bézier curves report conservative time bounds in which the moving triangle overlaps with a tile. The tests can be used in designing efficient hierarchical traversal algorithms for higher order motion blur rendering.
Abstract:
Cache thrashing or over-accessing of a cache can be reduced by reversing the order of traversal of a triangle on different granularities. In the case where triangles are not grouped, the traverse order may be reversed on each triangle. In cases where triangles are grouped, the traversal order may be reversed with each group change. However, when motion is excessive, for example beyond a threshold, then the traversal order reversal may be disabled.
Abstract:
An apparatus and method are described for a non-uniform rasterizer. For example, one embodiment of an apparatus comprises: a graphics processor to process graphics data and render images using the graphics data; and a non-uniform rasterizer within the graphics processor to determine different resolutions to be used for different regions of an image, the non-uniform rasterizer to receive a plurality of polygons to be rasterized and to responsively rasterize the polygons in accordance with the different resolutions.
Abstract:
An apparatus and method are described for a non-uniform rasterizer. For example, one embodiment of an apparatus comprises: a graphics processor to process graphics data and render images using the graphics data; and a non-uniform rasterizer within the graphics processor to determine different resolutions to be used for different regions of an image, the non-uniform rasterizer to receive a plurality of polygons to be rasterized and to responsively rasterize the polygons in accordance with the different resolutions.
Abstract:
An apparatus and method are described for a non-uniform rasterizer. For example, one embodiment of an apparatus comprises: a graphics processor to process graphics data and render images using the graphics data; and a non-uniform rasterizer within the graphics processor to determine different resolutions to be used for different regions of an image, the non-uniform rasterizer to receive a plurality of polygons to be rasterized and to responsively rasterize the polygons in accordance with the different resolutions.
Abstract:
A method for improving performance of generation of digitally represented graphics. The method comprises: receiving a first representation of a base primitive; providing a set of instructions associated with vertex position determination; executing said retrieved set of instructions on said first representation of said base primitive using bounded arithmetic for providing a second representation of said base primitive, and subjecting said second representation of said base primitive to a culling process. A corresponding apparatus and computer program product are also presented.
Abstract:
A method for improving performance of generation of digitally represented graphics. The method comprises: receiving a first representation of a base primitive; providing a set of instructions associated with vertex position determination; executing said retrieved set of instructions on said first representation of said base primitive using bounded arithmetic for providing a second representation of said base primitive, and subjecting said second representation of said base primitive to a culling process. A corresponding apparatus and computer program product are also presented.
Abstract:
A method for improving performance of generation of digitally represented graphics. The method comprises: receiving a first representation of a base primitive; providing a set of instructions associated with vertex position determination; executing said retrieved set of instructions on said first representation of said base primitive using bounded arithmetic for providing a second representation of said base primitive, and subjecting said second representation of said base primitive to a culling process. A corresponding apparatus and computer program product are also presented.