摘要:
Provided is a touch panel sensor which has excellent durability particularly in a longitudinal direction as in the case in which an indentation load is imposed, rarely undergoes the increase in electrical resistivity which may be caused by the disconnection of a wire or as elapse of time, has high reliability and high glossiness, and also has an excellent color-displaying capability. This touch panel sensor comprises a transparent conductive film and a wiring that is connected to the transparent conductive film, wherein the wiring comprises a refractory metal film, an Al alloy film and a high-melting-point metal film in this order when observed from the side of a substrate, and wherein the Al alloy film contains a rare earth element in an amount of 0.05-5 atomic %. It is preferred for the touch panel sensor that the hardness is 2-3.5 GPa and the density of grain boundary triple junctions in the Al alloy structure is 2×108 /mm2 or more. It is also preferred for the touch panel sensor that the Young's modulus is 80-200 GPa and the maximum value of the unidirectional tangential diameter (Feret diameter) of grain boundary is 100-350 nm. It is also preferred for the touch panel sensor that the glossiness is 800% or higher.
摘要:
Disclosed is an oxide for a semiconductor layer of a thin film transistor, which, when used in a thin film transistor that includes an oxide semiconductor in the semiconductor layer, imparts good switching characteristics and stress resistance to the transistor. Specifically disclosed is an oxide for a semiconductor layer of a thin film transistor, which is used for a semiconductor layer of a thin film transistor and contains at least one element selected from the group consisting of In, Ga and Zn and at least one element selected from the group X consisting of Al, Si, Ni, Ge, Sn, Hf, Ta and W.
摘要:
Disclosed is an Al alloy film for a display device that, even when low-temperature heat treatment is applied, can realize satisfactorily low electric resistance, can realize a satisfactory reduction in contact resistance between the Al alloy film and a transparent pixel electrode connected directly to the Al alloy film, and has excellent corrosion resistance. The Al alloy film is connected directly to a transparent electroconductive film on the substrate in the display device. The Al alloy film comprises 0.05 to 0.5 atomic % of Co and 0.2 to 1.0 atomic % of Ge and satisfies the requirement that the content of Co and the content of Ge in the Al alloy film have a relationship represented by formula (1): [Ge]≧−0.25×[Co]+0.2 (1) In formula (1), [Ge] represents the content of Ge in the Al alloy film, atomic %; and [Co] represents the content of Co in the Al alloy film, atomic %.
摘要:
Disclosed is an Al alloy film for a display device that, even when low-temperature heat treatment is applied, can realize satisfactorily low electric resistance, can realize a satisfactory reduction in contact resistance between the Al alloy film and a transparent pixel electrode connected directly to the Al alloy film, and has excellent corrosion resistance. The Al alloy film is connected directly to a transparent electroconductive film on the substrate in the display device. The Al alloy film comprises 0.05 to 0.5 atomic % of Co and 0.2 to 1.0 atomic % of Ge and satisfies the requirement that the content of Co and the content of Ge in the Al alloy film have a relationship represented by formula (1): [Ge]≧−0.25×[Co]+0.2 (1) In formula (1), [Ge] represents the content of Ge in the Al alloy film, atomic %; and [Co] represents the content of Co in the Al alloy film, atomic %.
摘要:
Disclosed is a Cu alloy film for a display device that has high adhesion to a glass substrate while maintaining a low electric resistance characteristic of Cu-based materials. The Cu alloy film is wiring in direct contact with a glass substrate on a board and contains 0.1 to 10.0 atomic % in total of one or more elements selected from the group consisting of Ti, Al, and Mg. Also disclosed is a display device comprising a thin-film transistor that comprises the Cu alloy film. In a preferred embodiment of the display device, the thin-film transistor has a bottom gate-type structure, and a gate electrode and scanning lines in the thin-film transistor comprise the Cu alloy film and are in direct contact with the glass substrate.
摘要:
Disclosed is a display device comprising an aluminum alloy film. In a wiring structure of a thin-film transistor substrate for use in display devices, the aluminum alloy film can realize direct contact between a thin film of an aluminum alloy and a transparent pixel electrode, can simultaneously realize low electric resistance and heat resistance, and can improve resistance to corrosion by an amine-based peeling liquid and an alkaline developing solution used in a thin-film transistor production process. In the display device, an oxide electroconductive film is in direct contact with an Al alloy film and at least a part of the Al alloy component is precipitated on the contact surface of the Al alloy film. The Al alloy film comprises at least one element (element X1) selected from the group consisting of Ni, Ag, Zn, and Co and at least one element (element X2) which, together with the element X1, can form an intermetallic compound. An intermetallic compound, which has a maximum diameter of not more than 150 nm and is represented by at least one of X1—X2 and Al—X1—X2, is formed in the Al alloy film.