摘要:
Disclosed is an oxide for a semiconductor layer of a thin film transistor, which, when used in a thin film transistor that includes an oxide semiconductor in the semiconductor layer, imparts good switching characteristics and stress resistance to the transistor. Specifically disclosed is an oxide for a semiconductor layer of a thin film transistor, which is used for a semiconductor layer of a thin film transistor and contains at least one element selected from the group consisting of In, Ga and Zn and at least one element selected from the group X consisting of Al, Si, Ni, Ge, Sn, Hf, Ta and W.
摘要:
Disclosed is an oxide for a semiconductor layer of a thin-film transistor, said oxide being excellent in the switching characteristics of a thin-film transistor, specifically enabling favorable characteristics to be stably obtained even in a region of which the ZnO concentration is high and even after forming a passivation layer and after applying stress. The oxide is used in a semiconductor layer of a thin-film transistor, and the aforementioned oxide contains Zn and Sn, and further contains at least one element selected from group X consisting of Al, Hf, Ta, Ti, Nb, Mg, Ga, and the rare-earth elements.
摘要:
Disclosed is an oxide for a semiconductor layer of a thin film transistor, which, when used in a thin film transistor that includes an oxide semiconductor in the semiconductor layer, imparts good switching characteristics and stress resistance to the transistor. Specifically disclosed is an oxide for a semiconductor layer of a thin film transistor, which is used for a semiconductor layer of a thin film transistor and contains at least one element selected from the group consisting of In, Ga and Zn and at least one element selected from the group X consisting of Al, Si, Ni, Ge, Sn, Hf, Ta and W.
摘要:
An interconnection structure, containing a substrate and, in the following order from a side of the substrate: (I) a semiconductor layer; (II) a multilayer structure including (II-a) a first layer containing at least one type of an element selected from the group consisting of nitrogen, carbon and fluorine and (II-b) an Al—Si diffusion layer containing Al and Si; and (III) an Al film of pure Al or an Al alloy, wherein the at least one of element selected from the group consisting of nitrogen, carbon, and fluorine in the first layer is bonded with Si contained in the semiconductor layer.
摘要:
Provided is a direct contact technology by which a barrier metal layer between an Al alloy interconnection composed of pure Al or an Al alloy and a semiconductor layer can be eliminated and the Al alloy interconnection can be directly and surely connected to the semiconductor layer within a wide process margin. In an interconnection structure, the semiconductor layer, and the Al alloy film composed of the pure Al or the Al alloy are provided on the substrate in this order from the substrate side. A multilayer structure of an (N, C, F) layer containing at least one type of an element selected from among a group composed of nitrogen, carbon and fluorine, and an Al—Si diffusion layer containing Al and Si is included in this order from the substrate side, between the semiconductor layer and the Al alloy film. At least the one type of the element, i.e., nitrogen, carbon or fluorine contained in the (N, C, F) layer is bonded with Si contained in the semiconductor layer.
摘要:
Disclosed is an Al alloy film for a display device that, even when low-temperature heat treatment is applied, can realize satisfactorily low electric resistance, can realize a satisfactory reduction in contact resistance between the Al alloy film and a transparent pixel electrode connected directly to the Al alloy film, and has excellent corrosion resistance. The Al alloy film is connected directly to a transparent electroconductive film on the substrate in the display device. The Al alloy film comprises 0.05 to 0.5 atomic % of Co and 0.2 to 1.0 atomic % of Ge and satisfies the requirement that the content of Co and the content of Ge in the Al alloy film have a relationship represented by formula (1): [Ge]≧−0.25×[Co]+0.2 (1) In formula (1), [Ge] represents the content of Ge in the Al alloy film, atomic %; and [Co] represents the content of Co in the Al alloy film, atomic %.
摘要:
The present invention provides an Al—(Ni, Co)—(Cu, Ge)—(La, Gd, Nd) alloy sputtering target capable of decreasing a generation of splashing in an initial stage of using the sputtering target, preventing defects caused thereby in interconnection films or the like and improving a yield and operation performance of an FPD, as well as a manufacturing method thereof. The invention relates to an Al-based alloy sputtering target which is an Al—(Ni, Co)—(Cu, Ge)—(La, Gd, Nd) alloy sputtering target comprising at least one member selected from the group A (Ni, Co), at least one member selected from the group B (Cu, Ge), and at least one member selected from the group C (La, Gd, Nd) wherein a Vickers hardness (HV) thereof is 35 or more.
摘要:
A thin film transistor containing at least, a gate electrode, a gate insulating film, an oxide semiconductor layer, source-drain electrode and a passivation film, in this order on a substrate. The oxide semiconductor layer is a laminate containing a first oxide semiconductor layer (IGZTO) and a second oxide semiconductor layer (IZTO). The second oxide semiconductor layer is formed on the gate insulating film, and the first oxide semiconductor layer is formed between the second oxide semiconductor layer and the passivation film. The contents of respective metal elements relative to the total amount of all the metal elements other than oxygen in the first oxide semiconductor layer are as follows; Ga: 8% or more and 30% or less; In: 25% or less, excluding 0%; Zn: 35% or more to 65% or less; and Sn: 5% or more to 30% or less.
摘要:
A display device includes a first substrate, a gate line disposed on the first substrate and including a gate electrode, a gate insulating layer disposed on the gate line, a semiconductor layer disposed on the gate insulating layer, a data line disposed on the semiconductor layer and connected to a source electrode, a drain electrode disposed on the semiconductor layer and facing the source electrode and a passivation layer disposed on the data line, in which the semiconductor layer is formed of an oxide semiconductor including indium, tin, and zinc. The indium is present in an amount of about 5 atomic percent (at %) to about 50 at %, and a ratio of the zinc to the tin is about 1.38 to about 3.88.
摘要:
Provided is a technique that allows oxidation of Cu wires to be effectively prevented during plasma processing when forming a passivation film for a display device that utilizes an oxide semiconductor layer. This wiring structure comprises a semiconductor layer (oxide semiconductor) for a thin film transistor, a Cu alloy film (laminated structure comprising a first layer (X) and a second layer (Z)), and a passivation film that are formed on a substrate, starting from the substrate side. The first layer (X) is made of an element that exhibits low electrical resistivity, such as pure Cu; and the second layer contains a plasma-oxidation-resistance improving element. The second layer (Z) is directly connected, at least partially, to the passivation film.