摘要:
Disclosed is a display device comprising an aluminum alloy film. In a wiring structure of a thin-film transistor substrate for use in display devices, the aluminum alloy film can realize direct contact between a thin film of an aluminum alloy and a transparent pixel electrode, can simultaneously realize low electric resistance and heat resistance, and can improve resistance to corrosion by an amine-based peeling liquid and an alkaline developing solution used in a thin-film transistor production process. In the display device, an oxide electroconductive film is in direct contact with an Al alloy film and at least a part of the Al alloy component is precipitated on the contact surface of the Al alloy film. The Al alloy film comprises at least one element (element X1) selected from the group consisting of Ni, Ag, Zn, and Co and at least one element (element X2) which, together with the element X1, can form an intermetallic compound. An intermetallic compound, which has a maximum diameter of not more than 150 nm and is represented by at least one of X1—X2 and Al—X1—X2, is formed in the Al alloy film.
摘要:
Disclosed is an Al alloy film for a display device that, even when low-temperature heat treatment is applied, can realize satisfactorily low electric resistance, can realize a satisfactory reduction in contact resistance between the Al alloy film and a transparent pixel electrode connected directly to the Al alloy film, and has excellent corrosion resistance. The Al alloy film is connected directly to a transparent electroconductive film on the substrate in the display device. The Al alloy film comprises 0.05 to 0.5 atomic % of Co and 0.2 to 1.0 atomic % of Ge and satisfies the requirement that the content of Co and the content of Ge in the Al alloy film have a relationship represented by formula (1): [Ge]≧−0.25×[Co]+0.2 (1) In formula (1), [Ge] represents the content of Ge in the Al alloy film, atomic %; and [Co] represents the content of Co in the Al alloy film, atomic %.
摘要:
Disclosed is an Al alloy film which can be in direct contact with a transparent pixel electrode in a wiring structure of a thin film transistor substrate that is used in a display device, and which has improved corrosion resistance against an amine remover liquid that is used during the production process of the thin film transistor. Also disclosed is a display device using the Al alloy film. Specifically disclosed is an Al alloy film for a display device, said Al alloy film being directly connected with a transparent conductive film on a substrate of a display device, and containing 0.05-2.0 atom % of Ge, at least one element selected from among element group X (Ni, Ag, Co, Zn and Cu), and 0.02-2 atom % of at least one element selected from among element group Q consisting of the rare earth elements. A Ge-containing deposit and/or a Ge-concentrated part is present in the Al alloy film for a display device. Also specifically disclosed is a display device comprising the Al alloy film.
摘要:
Disclosed is an Al alloy film for a display device that, even when low-temperature heat treatment is applied, can realize satisfactorily low electric resistance, can realize a satisfactory reduction in contact resistance between the Al alloy film and a transparent pixel electrode connected directly to the Al alloy film, and has excellent corrosion resistance. The Al alloy film is connected directly to a transparent electroconductive film on the substrate in the display device. The Al alloy film comprises 0.05 to 0.5 atomic % of Co and 0.2 to 1.0 atomic % of Ge and satisfies the requirement that the content of Co and the content of Ge in the Al alloy film have a relationship represented by formula (1): [Ge]≧−0.25×[Co]+0.2 (1) In formula (1), [Ge] represents the content of Ge in the Al alloy film, atomic %; and [Co] represents the content of Co in the Al alloy film, atomic %.
摘要:
The present invention provides an Al—(Ni, Co)—(Cu, Ge)—(La, Gd, Nd) alloy sputtering target capable of decreasing a generation of splashing in an initial stage of using the sputtering target, preventing defects caused thereby in interconnection films or the like and improving a yield and operation performance of an FPD, as well as a manufacturing method thereof. The invention relates to an Al-based alloy sputtering target which is an Al—(Ni, Co)—(Cu, Ge)—(La, Gd, Nd) alloy sputtering target comprising at least one member selected from the group A (Ni, Co), at least one member selected from the group B (Cu, Ge), and at least one member selected from the group C (La, Gd, Nd) wherein a Vickers hardness (HV) thereof is 35 or more.
摘要:
Disclosed is a highly reliable touch panel sensor comprising a guiding wiring that is less likely to cause an increase in electrical resistance and disconnection with the elapse of time, has a low electrical resistance, can ensure electrical conduction to a transparent conductive film, and can be connected directly to the transparent conductive film. The touch panel sensor comprises a transparent conductive film and a guiding wiring made of an aluminum alloy film connected directly to the transparent conductive film. The aluminum alloy film comprises 0.2 to 10 atomic% in total of at least one element selected from an X group consisting of Ni and Co. The aluminum alloy film has a hardness of 2 to 15 GPa.
摘要:
An interconnection structure, containing a substrate and, in the following order from a side of the substrate: (I) a semiconductor layer; (II) a multilayer structure including (II-a) a first layer containing at least one type of an element selected from the group consisting of nitrogen, carbon and fluorine and (II-b) an Al—Si diffusion layer containing Al and Si; and (III) an Al film of pure Al or an Al alloy, wherein the at least one of element selected from the group consisting of nitrogen, carbon, and fluorine in the first layer is bonded with Si contained in the semiconductor layer.
摘要:
Provided is a direct contact technology by which a barrier metal layer between an Al alloy interconnection composed of pure Al or an Al alloy and a semiconductor layer can be eliminated and the Al alloy interconnection can be directly and surely connected to the semiconductor layer within a wide process margin. In an interconnection structure, the semiconductor layer, and the Al alloy film composed of the pure Al or the Al alloy are provided on the substrate in this order from the substrate side. A multilayer structure of an (N, C, F) layer containing at least one type of an element selected from among a group composed of nitrogen, carbon and fluorine, and an Al—Si diffusion layer containing Al and Si is included in this order from the substrate side, between the semiconductor layer and the Al alloy film. At least the one type of the element, i.e., nitrogen, carbon or fluorine contained in the (N, C, F) layer is bonded with Si contained in the semiconductor layer.
摘要:
Provided is a direct contact technology by which a barrier metal layer between a Cu alloy wiring composed of pure Cu or a Cu alloy and a semiconductor layer can be eliminated, and the Cu alloy wiring can be directly and surely connected to the semiconductor layer within a wide process margin. The wiring structure is provided with the semiconductor layer and the Cu alloy film composed of pure Cu or the Cu alloy on a substrate in this order from the substrate side. A laminated structure is included between the semiconductor layer and the Cu alloy film. The laminated structure is composed of an (N, C, F) layer, which contains at least one element selected from among a group composed of nitrogen, carbon and fluorine, and a Cu—Si diffusion layer, which contains Cu and Si, in this order from the substrate side. Furthermore, at least the one element selected from among the group composed of nitrogen, carbon and fluorine is bonded to Si contained in the semiconductor layer.
摘要:
Provided is a direct contact technology by which a barrier metal layer between a Cu alloy wiring composed of pure Cu or a Cu alloy and a semiconductor layer can be eliminated, and the Cu alloy wiring can be directly and surely connected to the semiconductor layer within a wide process margin. The wiring structure is provided with the semiconductor layer and the Cu alloy film composed of pure Cu or the Cu alloy on a substrate in this order from the substrate side. A laminated structure is included between the semiconductor layer and the Cu alloy film. The laminated structure is composed of an (N, C, F) layer, which contains at least one element selected from among a group composed of nitrogen, carbon and fluorine, and a Cu—Si diffusion layer, which contains Cu and Si, in this order from the substrate side. Furthermore, at least the one element selected from among the group composed of nitrogen, carbon and fluorine is bonded to Si contained in the semiconductor layer.