Abstract:
According an aspect, a liquid crystal display device includes: a first substrate on which a reflective electrode is arranged for each of a plurality of pixels; a second substrate; a liquid crystal layer arranged between the first substrate and the second substrate; and a wave plate in which liquid crystals are fixed so that an alignment direction of the liquid crystals is opposite to an alignment direction of the liquid crystal layer. The wave plate is arranged on a second substrate side of the liquid crystal layer.
Abstract:
According to an aspect, a semi-transmissive liquid crystal display device includes a plurality of pixels arranged in a matrix, a plurality of reflective electrodes, a counter electrode facing the reflective electrode, and a liquid crystal layer. The reflective electrodes are provided for each of the pixels, and each of them includes a plurality of electrodes, with a combination of the areas of which area coverage modulation is performed by using n bits. The electrodes are configured such that a ratio of the sum of the perimeter(s) of electrode(s) corresponding to each bit of the n bits satisfies 1:2: . . . :2n-1. The liquid crystal layer is provided between the reflective electrode and the counter electrode. The semi-transmissive liquid crystal display device is configured to carry out reflective display using the reflective electrode and carry out transmissive display using at least a space of the reflective electrode between the pixels.
Abstract:
According to one embodiment, a liquid crystal display comprising a first substrate, a second substrate opposed the first substrate, a liquid crystal layer between the first substrate and the second substrate, a light-shielding layer including a first light-shield formed along a first direction and a second light-shield formed along a second direction and crossing the first light-shield, and a spacer which maintains a gap between the first substrate and the second substrate, the spacer overlapping a crossing region where the first light-shield and the second light-shield cross each other and including an exposed region outside the light-shielding layer in a planar view.
Abstract:
According to one embodiment, a display device includes a driver, a pixel circuit disposed to be apart from the driver in a plan view and to be electrically connected to the driver, a first pixel electrode disposed to overlap the pixel circuit in a plan view and to be electrically connected to the pixel circuit, a second pixel electrode disposed to overlap the driver in a plan view and to be closer to an outer edge of a display area than the first pixel electrode, and a relay line disposed between the pixel circuit and the first pixel electrode and between the driver and the second pixel electrode, the relay line electrically connecting the first pixel electrode and the second pixel electrode.
Abstract:
According to one embodiment, a display device, includes a first pixel line including a first sub-pixel and a second sub-pixel, a second pixel line including a third sub-pixel and a fourth sub-pixel, and a display driver supplying video signals which cause signal polarities of signal lines adjacent to each other to be opposite to each other, without varying the polarities in one frame period, the video signals having the same polarities as each other being written to the respective sub-pixels of the first pixel line, the video signals having the polarities which are the same as each other and opposite to the polarities of the video signals written to the first pixel line, being written to the respective sub-pixels of the second pixel line.
Abstract:
A display device is provided and includes sub-pixels each including a sub-pixel electrode, and a first and second memory; a clock signal output circuit configured to, based on a reference clock signal, output a plurality of clock signals having different frequencies; a selection circuit configured to select one of the clock signals as a selected clock signal; a memory selection circuit configured to select all of the first memories included in all the sub-pixels or all of the second memories included in all the sub-pixels in synchronization with the selected clock signal; a common electrode facing all of the sub-pixel electrodes; and a common-electrode driving circuit configured to provide a common potential to the common electrode, wherein the common potential is inverted in synchronization with the reference clock signal, wherein the sub-pixel electrode is driven based on sub-pixel data stored in the selected one of the memories to display an image.
Abstract:
According to an aspect, a liquid crystal display device includes: a first substrate and a second substrate that face each other; a liquid crystal layer provided between the first substrate and the second substrate; and a first electrode and a second electrode provided between the first substrate and the liquid crystal layer. The first electrode includes: at least an electrode base portion that extends in a first direction; and a plurality of comb-shaped portions that protrude from the electrode base portion at a fixed distance away from each other, and extend in a second direction different from the first direction. Each comb-shaped portion has a coupling portion layered on or under the electrode base portion.
Abstract:
A display device includes: a plurality of sub-pixels each including a memory block; a clock signal output circuit configured to output a plurality of clock signals having different frequencies; a selection circuit configured to select one of the clock signals as a selected clock signal; a plurality of memory selection line groups provided for respective rows; a memory selection circuit configured to output a memory selection signal concurrently to the memory selection line groups in synchronization with the selected clock signal, the memory selection signal being a signal for selecting one from a plurality of memories in each of the memory blocks; a common electrode to which a common potential common to the sub-pixels is supplied; and a common-electrode driving circuit configured to switch the common potential in synchronization with the reference clock signal and output the switched common potential.
Abstract:
A pixel array substrate structure includes: first and second planarizing films sequentially stacked on a substrate where a circuit unit is formed; and a relay wire formed between the first and second planarizing films, in which the relay wire electrically connects a first contact portion formed on the first planarizing film and connected to the circuit unit with a second contact portion formed at a position different from the first contact portion when seen from above, on the second planarizing film.
Abstract:
According to one embodiment, a display device includes a driver, a first pixel circuit disposed apart from the driver in plan view but electrically connected to the driver, a second pixel circuit separated further from the driver than the first pixel circuit in plan view but electrically connected to the driver, a first pixel electrode overlapping the driver in plan view, a second pixel electrode overlapping the first pixel circuit in plan view, a first relay line electrically connecting the first pixel circuit and the first pixel electrode to each other, and a second relay line electrically connecting the second pixel circuit and the second pixel electrode to each other.