Abstract:
A gas turbine engine combustor is provided and includes an array of fuel nozzles, a combustion casing assembly disposed about the array of fuel nozzles and an end cap assembly disposed within the combustion casing assembly to define with the combustion casing assembly an axis-symmetric annulus through which fluid travels into each of the fuel nozzles, at least one of the combustion casing assembly and the end cap assembly being formed with lobed, three-dimensional contouring.
Abstract:
A system comprising a fuel nozzle. The fuel nozzle includes a mounting base and an inlet flow conditioner extending directly from the mounting base in a downstream direction. Moreover, the inlet flow conditioner structurally supports the fuel nozzle without a central support member extending directly from the mounting base inside the inlet flow conditioner.
Abstract:
Fuel nozzles for gas turbines are provided that include liquid fuel cartridges. In one embodiment, a fuel nozzle includes a fuel plenum plate separating an air plenum from a fuel plenum. The fuel nozzle also includes a plurality of mixing tubes extending through the fuel plenum from the fuel plenum plate to a face plate. Each mixing tube includes an air inlet configured to receive air from the air plenum, a fuel inlet disposed in a tube wall within the fuel plenum to direct fuel from the fuel plenum into the mixing tube to produce a fuel-air mixture, and a fuel-air outlet configured to discharge the fuel-air mixture away from the face plate into a combustion region. The fuel nozzle further includes a liquid fuel cartridge extending through the air plenum and the fuel plenum to the face plate. The liquid fuel cartridge includes a liquid fuel passage.
Abstract:
A system includes a multi-tube fuel nozzle including a fuel nozzle head that includes an outer wall surrounding a chamber. The outer wall includes a downstream wall portion configured to face a combustion region. The multi-tube fuel nozzle also includes multiple tubes extending through the chamber to the downstream wall portion. Each tube of the multiple tubes includes an upstream portion, a downstream portion, and at least one fuel inlet disposed at the upstream portion, and is configured to receive air and mix the air with fuel from the at least one fuel inlet. The multi-tube fuel nozzle includes a fuel conduit extending through the chamber crosswise to and around the multiple tubes. The fuel conduit includes multiple impingement cooling orifices. A fuel flow path extends through the fuel conduit, through the impingement cooling orifices, through the chamber, and into the at least one fuel inlet of each tube.
Abstract:
An integrated plate is provided for use with a combustor including a casing, a fuel plenum extending circumferentially about the casing, and a fuel nozzle extending axially through the casing. The integrated plate includes a plurality of fuel injection pegs that extend radially between the fuel plenum and the fuel nozzle.
Abstract:
A resilient annular seal structure is disposed radially between an aft end portion of a combustor liner and a forward end portion of a transition piece, the resilient annular seal structure configured to form a first annular cavity radially between the forward end portion of the transition piece and the aft end portion of said combustor. At least one transfer tube radially extends from the second flow sleeve through the second flow annulus to the transition piece, and is arranged to supply compressor discharge cooling air radially from an area outside the first and second substantially axially extending flow annuli directly to the resilient annular seal structure and to the aft end of the combustor liner.
Abstract:
A system for providing hydrogen enriched fuel includes first and second gas turbines. The second gas turbine receives a portion of compressed working fluid from the first gas turbine and produces a reformed fuel, and a fuel skid provides fluid communication between a turbine in the second gas turbine and a combustor in the first gas turbine. A method for providing hydrogen enriched fuel includes diverting a portion of a first compressed working fluid from a first compressor to a second compressor and providing a second compressed working fluid from the second compressor. The method further includes mixing a fuel with the second compressed working fluid in a reformer to produce a reformed fuel, flowing the reformed fuel through a second turbine to cool the reformed fuel, and connecting the second turbine to the second compressor so that the second turbine drives the second compressor.
Abstract:
The present subject matter discloses a fluid cooled reformer for gas turbine systems and a method for cooling both a fuel reformer and a heated reformate stream produced by such fuel reformer. The fluid cooled reformer may include a pressure vessel and a reactor assembly disposed within the pressure vessel. The reactor assembly may include a reactor and may be configured to receive and reform an oxygen/fuel mixture to produce a heated reformate stream. Additionally, the fluid cooled reformer may include an inlet configured to direct a fluid stream into the pressure vessel. At least a portion of the fluid stream may be used to cool the reactor assembly. A reformate cooling section may be disposed downstream of the reactor of the reactor assembly and may be configured to cool the heated reformate stream.
Abstract:
An aft frame of a turbine engine transition piece body is provided and includes an annular body disposed within a first annular space defined between an impingement sleeve and a compressor discharge casing and aft of a second annular space defined between the transition piece body and the impingement sleeve and including a main portion with a first surface facing the first annular space and a second surface facing the forward annular space. The main portion has an impingement hole extending therethrough from an inlet at the first surface of the annular body to an outlet at the second surface of the annular body to define a fluid path along which the first and second annular spaces communicate with one another.
Abstract:
Disclosed is a combustor including a baffle plate having at least one through baffle hole and at least one fuel nozzle extending through the at least one baffle hole. A plurality of injection holes extend through the at least one fuel nozzle and are configured to meter a flow of diluent into the combustor. Further disclosed is a method for providing diluent to a combustor including providing a plurality of openings located at at least one fuel nozzle extending through a through hole in a baffle plate. The diluent is flowed through the plurality of openings toward at least one airflow opening in the at least one fuel nozzle.