Abstract:
A method of catalytically preparing a fluid product from solid carbonaceous material is described. In the method, at least one of the following equilibria is established by one or more catalysts: a) CH3OH═CO+2H2, b) CO+H2O═CO2+H2. In some versions, the solid carbonaceous material is woody biomass. Components of the fluid product can include one or a combination of C5-C9 alcohols. In certain versions, the method can he practiced with substantially all of the carbon in the carbonaceous material being converted to the fluid product. Also, in some versions, the fluid product can be prepared with substantially no char formation. The fluid product of various versions can be used directly as fuel or as a reagent for preparing commodity chemicals without the need for separating the fluid product components.
Abstract translation:描述了从固体碳质材料催化制备流体产物的方法。 在该方法中,通过一种或多种催化剂建立以下平衡中的至少一种:a)CH 3 OH = CO + 2H 2,b)CO + H 2 O = CO 2 + H 2。 在一些版本中,固体含碳材料是木质生物质。 流体产物的组分可以包括一种或其组合的C5-C9醇。 在某些形式中,该方法可以用碳质材料中的基本上所有碳转化为流体产物来实施。 而且,在一些形式中,流体产品可以基本上不形成炭黑来制备。 各种形式的流体产品可以直接用作燃料或用作制备商品化学品的试剂,而不需要分离流体产物组分。
Abstract:
A method, apparatus, and system for a solar-driven bio-refinery that may include a entrained-flow biomass feed system that is feedstock flexible via particle size control of the biomass. Some embodiments include a chemical reactor that receives concentrated solar thermal energy from an array of heliostats. The entrained-flow biomass feed system can use an entrainment carrier gas and supplies a variety of biomass sources fed as particles into the solar-driven chemical reactor. Biomass sources in a raw state or partially torrified state may be used, as long as parameters such as particle size of the biomass are controlled. Additionally, concentrated solar thermal energy can drive gasification of the particles. An on-site fuel synthesis reactor may receive the hydrogen and carbon monoxide products from the gasification reaction use the hydrogen and carbon monoxide products in a hydrocarbon fuel synthesis process to create a liquid hydrocarbon fuel.
Abstract:
An integrated process for the partial oxidation of whole crude oil mixed with a low cost finely divided solid ash-producing material in a membrane wall gasification reactor produces a syngas and, optionally, a more hydrogen-rich product stream by subjecting the syngas to a water-gas shift reaction. Process steam and electricity are produced by recovering the sensible heat values from the hot syngas.
Abstract:
A method of catalytically preparing a fluid product from solid carbonaceous material is described. In the method, at least one of the following equilibria is established by one or more catalysts: a) CH3OH═CO+2H2, b) CO+H2O═CO2+H2. In some versions, the solid carbonaceous material is woody biomass. Components of the fluid product can include one or a combination of C5-C9 alcohols, In certain versions, the method can he practiced with substantially all of the carbon in the carbonaceous material being converted to the fluid product. Also, in some versions, the fluid product can be prepared with substantially no char formation. The fluid product of various versions can be used directly as fuel or as a reagent for preparing commodity chemicals without the need for separating the fluid product components.
Abstract translation:描述了从固体碳质材料催化制备流体产物的方法。 在该方法中,通过一种或多种催化剂建立以下平衡中的至少一种:a)CH 3 OH = CO + 2H 2,b)CO + H 2 O = CO 2 + H 2。 在一些版本中,固体含碳材料是木质生物质。 流体产品的组分可以包括一种或其组合的C5-C9醇。在某些形式中,该方法可以用碳质材料中基本上所有的碳转化为流体产物。 而且,在一些形式中,流体产品可以基本上不形成炭黑来制备。 各种形式的流体产品可以直接用作燃料或用作制备商品化学品的试剂,而不需要分离流体产物组分。
Abstract:
A method, apparatus, and system for a solar-driven chemical plant that may include a solar thermal receiver having a cavity with an inner wall, where the solar thermal receiver is aligned to absorb concentrated solar energy from one or more of 1) an array of heliostats, 2) solar concentrating dishes, and 3) any combination of the two. Some embodiments may include a solar-driven chemical reactor having multiple reactor tubes located inside the cavity of solar thermal receiver, wherein a chemical reaction driven by radiant heat occurs in the multiple reactor tubes, and wherein particles of biomass are gasified in the presence of a steam (H2O) carrier gas and methane (CH4) in a simultaneous steam reformation and steam biomass gasification reaction to produce reaction products that include hydrogen and carbon monoxide gas using the solar thermal energy from the absorbed concentrated solar energy in the multiple reactor tubes.
Abstract:
A method, apparatus, and system for a solar-driven chemical plant are disclosed. An embodiment may include a solar thermal receiver aligned to absorb concentrated solar energy from one or more solar energy concentrating fields. A solar driven chemical reactor may include multiple reactor tubes located inside the solar thermal receiver. The multiple reactor tubes can be used to gasify particles of biomass in the presence of a carrier gas. The gasification reaction may produce reaction products that include hydrogen and carbon monoxide gas having an exit temperature from the tubes exceeding 1000 degrees C. An embodiment can include a quench zone immediately downstream of an exit of the chemical reactor. The quench zone may immediately quench via rapid cooling of at least the hydrogen and carbon monoxide reaction products within 0.1-10 seconds of exiting the chemical reactor to a temperature of 800 degrees C. or less.
Abstract:
There is described a reactor for entrained flow gasification for operation with dust-type or liquid fuels, wherein a number of gasification burners are disposed away from the reactor axis, with the center line of a gasification burner having an oblique position that is other than parallel to the reactor axis, it being possible for said oblique position to extend at different angles up to an angle of 90°. The center line does not necessarily have to intersect the reactor axis; rather the center line can pass the reactor axis at a predetermined distance. This arrangement is associated with a significant reduction in the unwanted discharge of dust-type fine slag, which is difficult to utilize, in conjunction with the possibility of reducing the reactor diameter due to its structure.
Abstract:
The present invention is generally directed to methods and systems for processing biomass into usable products, wherein such methods and systems involve an integration into conventional refineries and/or conventional refinery processes. Such methods and systems provide for an enhanced ability to utilize biofuels efficiently, and they can, at least in some embodiments, be used in hybrid refineries alongside conventional refinery processes.
Abstract:
Disclosed are a method and a corresponding apparatus for converting a biomass reactant into synthesis gas. The method includes the steps of (1) heating biomass in a first molten liquid bath at a first temperature, wherein the first temperature is at least about 100° C., but less than the decomposition temperature of the biomass, wherein gas comprising water is evaporated and air is pressed from the biomass, thereby yielding dried biomass with minimal air content. (2) Recapturing the moisture evaporated from the biomass in step 1 for use in the process gas. (3) Heating the dried biomass in a second molten liquid bath at a second temperature, wherein the second temperature is sufficiently high to cause flash pyrolysis of the dried biomass, thereby yielding product gases, tar, and char. (4) Inserting recaptured steam into the process gas, which may optionally include external natural gas or hydrogen gas or recycled syngas for mixing and reforming with tar and non-condensable gases. (5) Further reacting the product gases, tar, and char with the process gas within a third molten liquid bath at a third temperature which is equal to or greater than the second temperature within the second molten liquid bath, thereby yielding high quality and relatively clean synthesis gas after a relatively long residence time needed for char gasification. A portion of the synthesis gas so formed is combusted to heat the first, second, and third molten liquid baths, unless external natural or hydrogen gas is available for this use.
Abstract:
A process for joint entrained-bed gasification of ash-containing solid fuels and liquid fuels which are fed separately of each other to the coal gasification reactor via several burners, said burners having a concentric firing angle of greater than 0 degree such that soot formation is reduced and the conversion efficiency is increased, and the solid is conveyed to the gasification reactor together with an inert gas, and at least part of the ash-containing solid fuel contains fine coal particles which originate from coal mining and are not suited for fixed-bed gasification, and the liquid ash-containing fuel contains residues from a fixed-bed gasification.