Abstract:
Processes and systems for the production of heavy isoparaffinic hydrocarbons include feeding hydrogen and a mixed isoolefin stream, including C8-C12 olefins, isoolefins, and oligomers, and C8-C12+ hydrogenated hydrocarbons to a trickle-bed reactor system. The hydrogen and mixed isoolefin are reacted over a hydrogenation catalyst, producing a liquid effluent comprising hydrogenated hydrocarbons and unreacted olefins and oligomers, and a vapor effluent comprising hydrogenated hydrocarbons, hydrogen and unreacted olefins and oligomers. The liquid effluent is fed to a first heat exchanger, producing a cooled liquid effluent stream, which is combined with the vapor effluent, producing a mixed phase effluent. The mixed phase effluent is cooled in a second heat exchanger, producing a partially condensed effluent, which is fed to a drum, producing a vent stream, a hydrogenated product stream having greater than 95 wt % C8-C12 saturated hydrocarbons, and a hydrogenated recycle stream. The hydrogenated product stream may be provided to downstream blending systems.
Abstract:
In a method of hydroprocessing, hydrogen gas for the hydroprocessing reaction is combined with a liquid feed composition comprising a feedstock to be treated and a diluent to form a feed stream, at least a portion of the hydrogen gas being dissolved in the liquid feed composition of the feed stream, with non-dissolved hydrogen gas being present in the feed stream in an amount of from 1 to 70 SCF/bbl of the liquid feed composition. The feed stream is contacted with a hydroprocessing catalyst, within a reactor while maintaining a liquid mass flux within the reactor of at least 5000 lb/hr·ft2 to form a hydroprocessed product.
Abstract:
The present invention relates to a multiple-bed downflow reactor comprising vertically spaced beds of solid contact material and a mixing device positioned in an inter bed space between adjacent beds. The mixing device comprises a loop of first nozzles distributed around a vertical axis and arranged for ejecting a fluid in a first ejection direction into said inter bed space, on the one hand, and a loop of second nozzles distributed around the vertical axis and arranged for ejecting a fluid in a second ejection direction into said inter bed space, on the other hand. The first ejection direction is directed inwardly with respect to the loop of first nozzles. The second ejection direction is directed outwardly with respect to the loop of second nozzles.
Abstract:
A reactor for producing desired reaction products has a housing, a plurality of catalyst conduits within the housing, and a plurality of coolant conduits within the housing. The coolant conduits are interspersed among the catalyst conduits, and each catalyst conduit is positioned adjacent to at least two coolant conduits.
Abstract:
A solid/heat-transport and reactive gas reactor, including: a helical duct including an inlet and an outlet, the helical duct defining a helical bottom track on which a solid reagent can slide from the inlet to the outlet of the helical duct; a mechanism for bringing the solid reagent to the inlet of the helical duct; a mechanism for causing a heat-transport gas to flow in the helical duct, from the outlet to the inlet of the helical duct; a reservoir of solid reagent under the outlet of the helical duct; and a conveyor for conveying the reagent from a low point of the reservoir to the bringing mechanism.
Abstract:
The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
Abstract:
Catalyst regenerators and methods of their use are provided. A catalyst regenerator includes a combustion chamber with a combustion chamber diameter and a combustion chamber bottom. A mixing chamber is fluidly coupled to the combustion chamber at the combustion chamber bottom, where the mixing chamber has an exterior wall and a mixing chamber diameter less than the combustion chamber diameter. A first and second catalyst inlet are fluidly coupled to the mixing chamber, and a mixing cylinder is within the mixing chamber. The mixing cylinder and the exterior wall define an annular space there-between, and the mixing cylinder includes a cylinder opening.
Abstract:
The present invention relates to a reformed gas production apparatus that includes a reaction chamber containing a reforming catalyst, a supply route to the reaction chamber, a reformed gas conduction route from the reaction chamber, and a reaction chamber temperature control means that controls a temperature of the reaction chamber. The supply route supplies a fluid that includes a fuel containing a hydrocarbon having at least two carbon atoms, at least one of steam and a carbon dioxide-containing gas, and an oxygen-containing gas. The fuel can be a mixed fuel that includes a plurality of types of hydrocarbons that each have at least two carbon atoms. The reaction chamber temperature control means relates to the thermal decomposition index temperature of the fuel, which defines an upper limit temperature of the reforming reaction region.
Abstract:
In the production of phthalic anhydride by the oxidation of ortho-xylene with air, the ortho-xylene loading is increased without increasing the likelihood of explosion by insulating the system to avoid cold spots to keep the ortho-xylene at a temperature above its dew point; in addition the system may be electrically interconnected and grounded to reduce the risk of spark initiated explosions or deflagrations.
Abstract:
The present invention relates to a multiple-bed downflow reactor comprising vertically spaced beds of solid contact material and a mixing device positioned in an inter bed space between adjacent beds. The mixing device comprises a loop of first nozzles distributed around a vertical axis and arranged for ejecting a fluid in a first ejection direction into said inter bed space, on the one hand, and a loop of second nozzles distributed around the vertical axis and arranged for ejecting a fluid in a second ejection direction into said inter bed space, on the other hand. The first ejection direction is directed inwardly with respect to the loop of first nozzles. The second ejection direction is directed outwardly with respect to the loop of second nozzles.