摘要:
A medical device for monitoring a patient condition includes a first combination of a light source and a light detector to emit light into a volume of tissue, detect light scattered by the volume of tissue, and provide a first output signal corresponding to an intensity of the detected light. A control module is coupled to the light source to control the light source to emit light at least four spaced-apart light wavelengths, and a monitoring module is coupled to the light detector to receive the output signal, compute a measure of tissue oxygenation in response to the light detector output signal, and detect tissue hypoxia using the measure of tissue oxygenation.
摘要:
A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a monitoring module detecting a cardiac event in response to the sensed cardiac signals using first detection criteria, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the monitoring module, the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, determine a recovery index in response to the determined tissue oxygenation trend, and control one or both of detecting a cardiac event by the monitoring module and delivery of therapy by the therapy delivery module in response to the determined recovery index.
摘要:
A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a therapy delivery module coupled to the electrode to deliver a therapy via the electrode in response to the sensed cardiac signals, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the optical sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, and determine whether the delivered therapy restored cardiac hemodynamic function in response to the determined tissue oxygenation trend.
摘要:
A medical device system and associated method are used for monitoring tissue oxygenation. An optical sensor produces a signal corresponding to tissue light attenuation. A processor receives the optical sensor signal and computes a first measure of light attenuation at a first light wavelength and a second measure of light attenuation at a second light wavelength. In one embodiment, noise cancellation circuitry receives the first measure and the second measure and generates a guessed ratio of the first and second measures. Using the first measure, the second measure and the guessed ratio, the noise cancellation circuitry provides a peak output power when the guessed ratio corresponds to an actual ratio of the first and second measures.
摘要:
A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a therapy delivery module coupled to the electrode to deliver a therapy via the electrode in response to the sensed cardiac signals, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the optical sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, and determine whether the delivered therapy restored cardiac hemodynamic function in response to the determined tissue oxygenation trend.
摘要:
A medical device for monitoring a patient condition includes a sensor capable of being advanced transvascularly to be positioned along a volume of tissue, the sensor including a first combination of a light source and a light detector to emit light into a volume of tissue and to detect light scattered by the volume of tissue and to generate a first output signal corresponding to an intensity of the detected light. A control module is coupled to the light source to control the light source to emit light at least four spaced-apart light wavelengths, and a monitoring module is coupled to the light detector to receive the output signal and compute a measure of tissue oxygenation using the light detector output signal.
摘要:
An implantable medical device having an optical sensor selects the function of modular opto-electronic assemblies included in the optical sensor. Each assembly is provided with at least one light emitting device and at least one light detecting device. A device controller coupled to the optical sensor controls the function of each the assemblies. The controller executes a sensor performance test and selects at least one of the plurality of assemblies to operate as a light emitting assembly in response to a result of the performance test. The controller selects at least one other of the plurality of optical sensor assemblies to operate as a light detecting assembly in response to a result of the performance test
摘要:
A reflectance-type optical sensor includes one or more photodiodes formed in a semiconductor substrate. A well having sidewalls and a bottom is formed in the top surface of the substrate, and a reflective layer is formed on the sidewalls and bottom. A light-emitting diode (LED) is mounted in the well, so that light emitted laterally and rearwardly from the LED strikes the sidewalls or bottom and is redirected in a direction generally perpendicular to the top surface of the substrate. The optical sensor can be fabricated using microelectromechanical systems (MEMS) fabrication techniques.
摘要:
An implantable medical device having an optical sensor selects the function of modular opto-electronic assemblies included in the optical sensor. Each assembly is provided with at least one light emitting device and at least one light detecting device. A device controller coupled to the optical sensor controls the function of each the assemblies. The controller executes a sensor performance test and selects at least one of the plurality of assemblies to operate as a light emitting assembly in response to a result of the performance test. The controller selects at least one other of the plurality of optical sensor assemblies to operate as a light detecting assembly in response to a result of the performance test.
摘要:
A reflectance-type optical sensor includes one or more photodiodes formed in a semiconductor substrate. A well having sidewalls and a bottom is formed in the top surface of the substrate, and a reflective layer is formed on the sidewalls and bottom. A light-emitting diode (LED) is mounted in the well, so that light emitted laterally and rearwardly from the LED strikes the sidewalls or bottom and is redirected in a direction generally perpendicular to the top surface of the substrate. The optical sensor can be fabricated using microelectromechanical systems (MEMS) fabrication techniques.