Abstract:
The invention provides means for determining 3D position data in an MRI system. A method for motion correction of MR data, comprising: generating, by a calculation unit (51), a three-dimensional model, 3D model, of a region of interest (24) of a subject (23) comprising at least one landmark (27) inherent to the subject (23) (S10); obtaining, by a first measuring device (20, 25, 52), a two-dimensional image, 2D image, of at least a part of the subject (23) inside a MRI system (22), wherein the measuring device is arranged inside a bore of the MRI system (22) (S20); determining, by the calculation unit (53), at least one landmark (27) in the 2D image, wherein the at least one landmark (27) in the 2D image corresponds to the at least one landmark (27) of the 3D model (S30); determining, by the calculation unit (54), a 3D position of the region of interest (24) of the subject (23) in the MRI system (22) based on the determined at least one landmark (27) in the 2D image (S40); providing, by the calculation unit (55), the 3D position of the region of interest (24) of the subject (23) for motion correction of MR data (S50).
Abstract:
A computer-implemented method for preparing a subject in medical imaging, comprising: obtaining a series of images of a region of interest comprising at least a part of the subject, wherein the series of images comprises at least a first image and at least a subsequent, second image (S10); determining a position of at least one landmark from the series of images, wherein the at least one landmark is anatomically related to a target anatomy (S20); determining a confidence level assigned to the position of the at least one landmark (S30); determining the position of the target anatomy based on the position of the at least one landmark, and the confidence level (S40); providing the position of the target anatomy for preparing the subject in medical imaging (S50).
Abstract:
Disclosed is a magnetic resonance imaging magnet assembly (102, 102′) configured for supporting a subject (118) within an imaging zone (108). The magnetic resonance imaging magnet assembly comprises a magnetic resonance imaging magnet (104), wherein the magnetic resonance imaging magnet is configured for generating a main magnetic field with the imaging zone. The magnetic resonance imaging magnet assembly further comprises an optical image generator (122) configured for generating a two-dimensional image. The magnetic resonance imaging magnet assembly further comprises an optical waveguide bundle (123) configured for coupling to the optical image generator. The magnetic resonance imaging magnet assembly further comprises a two-dimensional display (124) comprising pixels (600), wherein each of the pixels comprises a diffusor (602, 602′). Each of the pixels is optically coupled to at least one optical waveguide selected from the optical waveguide bundle, wherein the at least one optical waveguide of each of the pixels is configured for illuminating the diffusor. The optical waveguide bundle and the two-dimensional display are configured for displaying the two-dimensional image.
Abstract:
A magnetic resonance (MR) imaging device repeatedly executes a navigator pulse sequence to generate navigator data in image space as a function of time, and a motion signal of an anatomical feature that moves with a physiological cycle as a function of time is extracted from the navigator data. A concurrent physiological signal as a function of time is generated by a physiological monitor concurrently with the repeated execution of the navigator pulse sequence. A gating time offset is determined by comparing the motion signal of the anatomical feature as a function of time and the concurrent physiological signal as a function of time. The MR imaging device performs a prospective or retrospective gated MR imaging sequence using gating times defined as occurrence times of gating events detected by the physiological monitor modified by the gating time offset.
Abstract:
A magnetic resonance (MR) system (10) for guidance of a shaft or needle (16) to a target (14) of a subject (12) is provided. The system includes a user interface (76). The user interface (76) includes a frame (78) positioned on a surface of the subject (12). The frame (78) includes an opening (82) over an entry point of a planned trajectory for the shaft or needle (16). The planned trajectory extends from the entry point to the target (14). The user interface (76) further includes one or more visual indicators (80) arranged on the frame (78) around the opening (82). The one or more visual indicators (80) at least one of: 1) visually indicate deviation of the shaft or needle (16) from the planned trajectory; and 2) visually indicate a current position of a real-time slice of real-time MR images.
Abstract:
A method for determining wall thickness of an anatomic detail (52), in particular of the heart, of a subject of interest (20) by magnetic resonance imaging includes: defining (82) a first location (54) and a second location (56) on a surface representation; —generating (84) a line-structure of interest (60), —determining (86), for each location (62) of a plurality of locations (62), a normal direction (64); —determining (88) a mean normal direction (66); —determining (90) a mean imaging plane (68); —determining (92) a measure that is representative of angular deviations (43) of the determined normal directions (64); —based on the determined measure, determining (96) imaging planes (70); —determining (98) deviations of the determined normal directions (64) to the imaging planes (70); —acquiring (100) magnetic resonance images for all imaging planes (68, 70); and —determining (102) the wall thickness at a specific location (62) from the magnetic resonance image acquired in the imaging plane (70) that has the lowest angular deviation to the normal direction (64) at the specific location (62). A magnetic resonance imaging system (10) has a controller (26) configured to carry out steps (78-102) of the method. A software module (50) carries out the method by implementing program code from a memory (28) and executed by a processor (30) of the magnetic resonance imaging system (10).
Abstract:
A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
Abstract:
The invention relates to an electrocardiograph sensor mat (100), the mat (100) comprising a multitude of electrodes (104) for acquiring cardiac signals and a plug (200), wherein the electrodes (104) are connected to the plug (200) by electric wires (102), wherein the wires (102) are segmented by switches (202), wherein the switches (202) are switchable between a closed state and an open state, wherein in the closed state the electrodes (104) are electrically connected to the plug (200) and wherein in the open state the electrodes (104) are electrically isolated from the plug (200).
Abstract:
A magnetic resonance (MR) system (10) for guidance of a shaft or needle (16) to a target (14) of a subject (12) is provided. The system includes a user interface (76). The user interface (76) includes a frame (78) positioned on a surface of the subject (12). The frame (78) includes an opening (82) over an entry point of a planned trajectory for the shaft or needle (16). The planned trajectory extends from the entry point to the target (14). The user interface (76) further includes one or more visual indicators (80) arranged on the frame (78) around the opening (82). The one or more visual indicators (80) at least one of: 1) visually indicate deviation of the shaft or needle (16) from the planned trajectory; and 2) visually indicate a current position of a real-time slice of real-time MR images.
Abstract:
An active position marker system comprising at least one active position marker (10) and a remote transceiver unit (20) for communicating with the position marker is disclosed. Basically, the position marker (10) comprises a local RF receive coil (11) for receiving MR signals which are excited in a local volume, and a parametric amplifier (14) for amplifying and upconverting the frequency of the received MR signal into at least one microwave sideband frequency signal. This microwave signal is transmitted wirelessly or wire-bound to the transceiver unit for downconverting the same and supplying it to an image processing unit of an MR imaging apparatus.