Abstract:
An apparatus for measuring time interval between two selected edges of a clock signal. includes an edge generator, a first multi-tap delay module, a second multi-tap delay module, and a multi-element phase detector. The edge generator produces a first edge at a first output node and a second selected edge at a second output node. First multi-tap delay module provides a first constant incremental delay at each tap to the first edge. Second multi-tap delay module provides a second constant incremental delay at each tap to the second selected edge. Each element of the multi-element phase detector has a first input terminal and a second input terminal. The first input terminal is coupled to a selected tap of the first multi-tap delay module and the second input terminal is coupled to a corresponding tap of the second multi-tap delay module. The output terminals of the multi-element phase detector provide the value of the time interval.
Abstract:
A programmable high-speed frequency divider is provided in which a stage for forming a frequency divider, which is capable of being programmed with a programmable dividing ratio, is simplified in order to reduce the area and circuit complexity. The programmable frequency divider includes a first synchronizing element coupled to an output of a logic detection circuit for generating a synchronized divider output, an additional synchronizing element coupled to the output of the logic detection circuit for receiving its clock from the output of a divide-by-two circuit and generating a special synchronized load output, and combinational logic blocks that receive the load output and generate load signals for bit-cells for detecting the state of all stages. Preferably, start-up circuitry is included within the frequency divider to ensure that the frequency-divider never goes into a false state.
Abstract:
The invention relates to an improved phase locked loop (PLL) circuit for preventing erroneous condition in the charge pump operation. The invention includes modification in the PLL circuitry by adding delay elements for connection between the phase frequency detector and the charge pump and a digital logic circuit for obtaining the clock signals for the loop filter.
Abstract:
A pseudo true single phase clock latch (pseudo “TSPC” latch) includes additional circuitry coupled to three previously floating nodes that can lose data depending upon the amount of leakage current associated with these nodes. The additional circuitry, including a positive feedback circuit, improves the performance of a true single phase clock latch circuit at lower frequencies without significant degradation in high frequency operation of the latch.
Abstract:
A first order temperature compensated reference current generator includes a current device providing a controlled current, a startup circuit connected to the current device for initiating operation of the current device, and a current definition mechanism driven by the current device for supplying a current which is independent of temperature, process and individual temperature coefficients circuit elements used. The current definition mechanism incorporates voltage controlled resistors driven by a predetermined voltage and having a predetermined temperature coefficient.
Abstract:
A pseudo true single phase clock latch (pseudo “TSPC” latch) includes additional circuitry coupled to three previously floating nodes that can lose data depending upon the amount of leakage current associated with these nodes. The additional circuitry, including a positive feedback circuit, improves the performance of a true single phase clock latch circuit at lower frequencies without significant degradation in high frequency operation of the latch.
Abstract:
A VCO buffer circuit comprising a first loading means receiving a first signal for loading the VCO at a first input node; a second loading means receiving a second signal for loading the VCO at a second input node; a third loading means coupled to said first loading means for loading the VCO at third input node to thereby balance a load distribution on three nodes of VCO. At least three current controlling means are coupled to each other to form a symmetrical configuration and receive input signals from said first and second loading means for minimizing variations in the oscillation frequency of the VCO. A buffering means is connected to the output of the controlling means for buffering the output of the current controlling means.