摘要:
A method and apparatus are described which perform bandwidth aggregation by simultaneously monitoring and processing a number of simultaneous, non-contiguous or contiguous component carriers in the downlink. A wireless transmit/receive unit (WTRU) can be configured by an evolved Node-B (eNodeB) to support additional component carriers. A pre-configured additional component carrier may be used. Various methods for activating and deactivating the additional component carrier are also described.
摘要:
A mobility service and control function (MSCF), operating in an application layer of a wireless transmit/receive unit (WTRU), selects and controls a plurality of mobility services. These mobility services may include session initiation protocol (SIP), Internet protocol (IP) Multimedia subsystem (IMS), voice call continuity (VCC), mobile IP (MIP), proxy MIP (PMIP), and generic access network (GAN), but are not limited thereto. The MSCF further selects and controls a plurality of air interface technologies for accessing a plurality of radio access networks. The MSCF allows application layer handling of mobility management.
摘要:
A method and apparatus for improving handover in an IEEE 802.21 compliant communication network. A query is transmitted from a wireless transmit/receive unit (WTRU) to a media independent handover (MIH) server (MIHS). The WTRU includes a target point of attachment (PoA) and/or a preferred mobile inter protocol (MIP) method. The WTRU receives a response from the MIHS indicating the MIP method supported by the target PoA. Based on the received response, the WTRU may make an informed decision regarding handover.
摘要:
An apparatus and method makes a decision whether or not to handover a wireless transmit-receive unit to a new network in a wireless or fixed network communication system. In a specific embodiment, a media-independent handover application server, operating according to IEEE 802.21 protocol, exchanges information with a server by using a Third Generation Partnership Project standardized interface. The method allows for an IMS based handover server to extract user preference and subscription information from a subscription server. The improvement allows new kinds of information to be exchanged between the handover and subscription server for optimized handover decisions.
摘要:
A wireless communication device is configured as an in-home node-B (H(e)NB). The H(e)NB is configured to perform a locking function to control modification of carrier and user controlled parameters, and also configured to detect a change in location.
摘要:
A method for configuring an enhanced Node B (eNB) in a long term evolution (LTE) wireless communication network includes providing information to the eNB, wherein the eNB can perform a self-configuration process based on the provided information. An eNB for use in an LTE wireless communication network includes a universal integrated circuit card and a service control module. The universal integrated circuit card includes information that the eNB can use to perform a self-configuration process. The service control module is configured to receive the circuit card and read the information on the circuit card.
摘要:
Ciphering control and synchronization for both U-plane data and C-plane signaling messages in a wireless communication network are disclosed. Ciphering entities are located in a wireless transmit/receive unit (WTRU) and a network. The ciphering entities of the WTRU and the network perform ciphering control and ciphering parameter synchronization. The ciphering may be performed with a packet data convergence protocol (PDCP) layer sequence number (SN) for user plane data, a non-access stratum SN, a radio resource control SN, or an encryption SN for a control plane message. Alternatively, the ciphering control and ciphering parameter synchronization may be performed by PDCP entities of the WTRU and the network. For ciphering parameter synchronization, HFN and SN synchronization and counter check procedures are performed by the WTRU and the network based on a synchronization command message, sequence number window information, or a counter check message exchanged between the WTRU and the network.
摘要:
A media independent handover (MIH) application server which facilitates seamless integration of multi-technology networks. The MIH application server includes a higher layer transport unit for interfacing with at least one dual mode terminal, a layer 2 (L2) transport unit for interfacing with the dual mode terminal via a first access network, (e.g., IEEE 802.21, Ethernet and the like), and a session initiation protocol (SIP) interface for interfacing with the dual mode terminal via a second access network, (e.g., a Third Generation Partnership Project (3GPP) network). The MIH application server facilitates seamless integration of Internet protocol (IP) functions of the dual mode terminal via the higher layer transport unit, facilitates seamless integration of IEEE 802 functions of the dual mode terminal via the L2 transport unit, and supports SIP signaling between the MIH application server and the dual mode terminal via the second access network.
摘要:
A Third Generation Partnership Project (3GPP) media independent handover (MIH) service access point (SAP) is configured to provide MIH event services, (e.g., IEEE 802.21 event services), by mapping service primitives to the MIH event services. The service primitives may be 3GPP service primitives which originate from at least one of a radio resources (RR) layer, a logical link control (LLC) layer, a general packet radio service (GPRS) mobility management (GMM) layer, a session management (SM) layer, a non-access stratum (NAS), an access stratum (AS) and an evolved universal terrestrial radio access (E-UTRA)/evolved core network (E-CORE) system. The event services may include a link parameter change event service, a link up event service, a link going down event service, a link down event service, a handover complete event service and a link detected event service.
摘要:
A method and system for integrating media independent handover (MIH) under IEEE 802.21 and unlicensed mobile access (UMA) are disclosed. A public land mobile network (PLMN) and an unlicensed mobile access network (UMAN) are concurrently deployed. UMA is supported such that a multi-mode wireless transmit/receive unit (WTRU) may access the UMAN to receive PLMN services through the UMAN. MIH entities are included both in the VVTRU and the UMAN and the MIH entity of the WTRU monitors handover events and information and generates a handover trigger for handover between the PLMN and the UMAN. The MIH entity in the UMAN interacts with the MIH entity of the WTRU to report a remote event, handover information and command.