Abstract:
According to one embodiment of the present invention, provided is a wireless equipment for transmitting an uplink signal through a reduced transmission resource block (RB) in a wireless communication system. The wireless equipment can comprise: a processor; and a radio frequency (RF) unit for transmitting an uplink signal under control of the processor. When the RF unit is set to a predetermined channel bandwidth and a predetermined frequency range and must satisfy a predetermined maximum allowed value of spurious radiation to protect another frequency range, the uplink signal can be transmitted according to a predetermined maximum number of RBs instead of a total number of RBs for the predetermined channel bandwidth.
Abstract:
A disclosure of this specification provides a device configured to operate in a wireless system, the device comprising: a transceiver configured with an Evolved Universal Terrestrial Radio Access (E-UTRA)—New Radio (NR) Dual Connectivity (EN-DC), wherein the EN-DC is configured to use three bands, a processor operably connectable to the transceiver, wherein the processer is configured to: control the transceiver to receive a downlink signal, control the transceiver to transmit an uplink signal via at least two bands among the three bands, wherein a value of Maximum Sensitivity Degradation (MSD) is applied to a reference sensitivity for receiving the downlink signal.
Abstract:
A mobile robot includes a driver configured to provide a traveling function, a body disposed at an upper side of the driver, a concave portion recessed inward from a surface of the body, a vent hole formed at an upper side of the concave portion, and a guide inclined surface formed at a lower side of the concave portion. During traveling of the mobile robot, the mobile robot induces inflow of air so that the body can be cooled.
Abstract:
One disclosure of this specification provides a method for receiving a synchronization signal block (SSB) by a user equipment (UE). The method may include: determining frequency locations of multiple SSBs; and receiving at least one SSB among the multiple SSBs. The multiple SSBs may be configured to be arranged spaced apart from each other by a predetermined offset. The at least one SSB may be located at an interval of 1.2 MHz on a frequency axis.
Abstract:
One disclosure of the present specification provides user equipment (UE). The UE comprises: a transmission and reception unit for transmitting and receiving a signal; and a processor for controlling the transmission and reception unit. The UE may output at a maximum of 26 dBm. The processor determines a transmission power on the basis of additional maximum power reduction (A-MPR). The A-MPR: is configured on the basis of a carrier frequency; is configured on the basis of a modulation scheme; and is configured on the basis of LCRB, startRB, and RB allocation. The transmission and reception device may transmit a sidelink signal to another UE by means of the transmission power.
Abstract:
One disclosure of the present specification provides user equipment (UE). The UE comprises: a transceiver to transmit a signal and to receive a signal; and a processor to control the transceiver, wherein the UE is a power class 2 UE or power class 3, wherein the processor determines transmission power based on MPR (maximum power reduction), wherein the transceiver transmits a signal with the transmission power in FR2-2, wherein the MPR is configured, based on channel bandwidth, RB (resource block) allocation and modulation type.
Abstract:
A disclosure of the present specification provides a user equipment (UE) supporting a Dual Connectivity (DC) with Evolved Universal Terrestrial Radio Access (E-UTRA) and New Radio (NR). The UE may include a transceiver configured with the DC and configured to transmit an uplink signal and receive a downlink signal; and a processor configured to control the transceiver. Wherein based on (i) that the E-UTRA includes at least E-UTRA operation band 41, (ii) that the NR includes at least NR operation band 41, and (iii) that a band to be protected is a first band, the transceiver may be configured with a predetermined maximum level of a spurious emission.
Abstract:
One disclosure of the present specification provides a method for performing communication by a user equipment (UE). The method comprises the steps of: configuring a maximum output power based on minimum peak EIRP (Effective Isotropic Radiated Power) of the UE; determining a transmission power based on the configured maximum output power; transmitting signal via n263 operation band in FR2-2 (Frequency Range2-2), based on the transmission power, wherein the UE is a power class 2 UE, wherein the minimum peak EIRP of the UE is 22.7 dBm.
Abstract:
One disclosure of the present specification provides user equipment (UE). The UE comprises: a transceiver to transmit a signal and to receive a signal; and a processor to control the transceiver, wherein the UE is a power class 2 UE or power class 3, wherein the processor determines transmission power based on MPR (maximum power reduction), wherein the transceiver transmits a signal with the transmission power in FR2-2, wherein the MPR is configured, based on channel bandwidth, RB (resource block) allocation and modulation type.
Abstract:
Provided is a method for transmitting and receiving a signal by a terminal supporting dual-connectivity between evolved universal terrestrial radio access (E-UTRA) and new radio (NR). In the method, when the terminal is configured to aggregate at least two carriers and when the at least two carriers include one of E-UTRA operating bands 1, 3, 19, and 21 and at least one of NR operating bands n78 and n79, an uplink center frequency of a first carrier among the at least two carriers is a first value and a downlink center frequency of the first carrier is a second value, a predetermined maximum sensitivity degradation (MSD) is applied to a reference sensitivity used for reception of the downlink signal.