Abstract:
A method for allowing a user equipment (UE) and a base station (BS) to transmit and receive uplink (UL) signals in a wireless communication system is disclosed.
Abstract:
One disclosure in the present specification presents a method for a wireless device to receive a paging message. The method may comprise: a step of deciding a wake up signal occasion (WUSO) window for attempting to receive a wake up signal (WUS); and a step of monitoring a downlink control channel during a paging window so as to attempt to receive a paging message, if the WUS is received within the decided WUSO window. Here, the WUSO window may be decided according to a duration size and offset.
Abstract:
Disclosed herein is a method for transmitting a physical random access channel (PRACH) by a user equipment in a wireless communication system. In particular, the method includes receiving information about PRACH resource allocation, and transmitting, based on the information, the PRACH on any one of one or more PRACH occasions allocated in a PRACH slot, wherein a number of the one or more PRACH occasions is based on a preamble format and a starting Orthogonal Frequency Division Multiplexing (OFDM) symbol for the PRACH.
Abstract:
Disclosed herein is a method for transmitting a physical random access channel (PRACH) by a user equipment (UE) in a wireless communication system. In particular, the method includes receiving information related to PRACH resource allocation within a specific duration, and transmitting the PRACH on a PRACH occasion allocated to one or more slots based on the information, wherein the one or more slots include a last slot in the specific duration.
Abstract:
The present disclosure provides a method for receiving a synchronization signal block by a UE in a wireless communication system. Particularly, the method includes receiving at least one SSB mapped to a plurality of symbols, wherein two regions for candidate SSBs in which the at least one SSB can be received are allocated in a specific time duration including the plurality of symbols, and a time between the two regions, a time before the two regions and a time after the two regions are identical in the specific time duration.
Abstract:
A UE transmits a random access channel (RACH) preamble and a BS receives the RACH channel. The BS configures the RACH preamble to align boundaries of the RACH preamble with boundaries of OFDM symbols on which the RACH preamble is configured in the time domain. The UE generates/transmits the RACH preamble to align the boundaries of the RACH preamble with the boundaries of OFDM symbols on which the RACH preamble is configured in the time domain.
Abstract:
Provided is a communication method for interference avoidance in an unlicensed band. A transmission node transmits in the unlicensed band a preemption signal to a target reception node. Upon receiving a ready signal from the target reception node, the transmission node transmits in the unlicensed band a data signal to the target reception node. The preemption signal is transmitted by means of a narrow beam having substantially the same width and direction as the data signal.
Abstract:
A UE transmits a random access channel (RACH) preamble and a BS receives the RACH channel. The BS configures the RACH preamble to align boundaries of the RACH preamble with boundaries of OFDM symbols on which the RACH preamble is configured in the time domain. The UE generates/transmits the RACH preamble to align the boundaries of the RACH preamble with the boundaries of OFDM symbols on which the RACH preamble is configured in the time domain.
Abstract:
A received signal strength indicator (RSSI) measurement time resource is provided to a user equipment. RSSI measurement symbol information indicating OFDM symbols from which the UE measures RSSI in a time resource unit for RSSI measurement (hereinafter, an RSSI measurement time resource unit) is provided to the user equipment. The user equipment measures RSSI from the OFDM symbols indicated by the RSSI measurement symbol information in RSSI measurement time resource unit(s).
Abstract:
One disclosure of the present specification provides a method of receiving a signal based on signal quality in a device to device (D2D) communication. The method may include: receiving a signal from the other terminal; measuring signal quality for each of a plurality of physical resource block (PRB) regions included in a frequency region in which the signal can be received; choosing a candidate PRB region for which demodulation is performed among the plurality of PRB regions on the basis of the measured signal quality; and performing demodulation on the candidate PRB region.