摘要:
In many cellular systems, reusing spectrum bandwidth, creates problems in boundary regions between the cells and sectors where the signal strength received from adjacent base stations or adjacent sector transmissions of a single base station may be nearly equivalent. The invention creates a new type of diversity, referred to as multiple carrier diversity by utilizing multiple carriers, assigning different power levels to each carrier frequency at each base station, and/or offsetting sector antennas. The cell and/or sector coverage areas can be set so as to minimize or eliminate overlap between cell and/or sector boundary regions of different carrier frequencies. Mobile nodes traveling throughout the system can exploit multiple carrier diversity by detecting carriers and selecting to use a non-boundary carrier based on other system criteria in order to improve performance. Boundary carriers may, but need not be, identified and excluded from consideration for use by a wireless terminal.
摘要:
The use of multiple states of mobile communication device operation to allow a single base station to support a relatively large number of mobile nodes is described. Various states require different amounts of communications resources, e.g., bandwidth and/or control signaling. Different numbers of control channels are monitored during different states of operation. A mobile node monitors during a first state of operation, e.g., the on-state, a first control channel to detect control signals in segments of the first control channel intended for the mobile node, detects a period of reduced control signaling to said mobile node on said first control channel, and then, in response to detecting a period of reduced control signal signaling to the mobile node, transitions from said first state to a second state of operation. During the second state of operation fewer control channels are monitored and the first control channel is not monitored.
摘要:
A terminal is assigned an active identifier for use while in an active state of a connection with a base station. The base station periodically broadcasts the status of the active identifiers for that base station, e.g., via status validation bits that indicate whether each active identifier is currently assigned to a terminal or not assigned to any terminal. The base station may also broadcast the identity (e.g., a scrambling mask) of the terminal assigned with each active identifier that is currently in use. If a terminal believes that it is assigned a particular active identifier, then the terminal checks the status validation bit for this active identifier. If this status validation bit indicates that the active identifier is currently in use, then the terminal may further check the scrambling mask sent for the active identifier in order to determine whether the terminal is actually assigned the active identifier.
摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
摘要:
Techniques for efficiently sending reports in a wireless communication system are described. Reports may be sent repetitively in accordance with a reporting format. A terminal receives an assignment of a control channel used to send reports and determines a reporting format to use based on the assignment. The reporting format indicates a specific sequence of reports sent in specific locations of a control channel frame. The terminal generates a set of reports for each reporting interval and arranges the set of reports in accordance with the reporting format. The terminal repetitively sends a plurality of sets of reports in a plurality of reporting intervals. Reports may also be sent adaptively based on operating conditions. An appropriate reporting format may be selected based on the operating conditions of the terminal, which may be characterized by environment (e.g., mobility), capabilities, QoS, and/or other factors.
摘要:
Allocation of a wireless communications system channel resource is managed by utilizing traffic segment allocation. This is realized by partitioning the channel resource into an assignment channel and a traffic channel in a fixed manner. The assignment channel includes assignment segments and the traffic channel includes traffic segments. The traffic segment is the basic traffic channel resource unit used to transport traffic data and has a prescribed finite time interval and bandwidth. Each traffic segment is associated with a so-called assignment segment in a prescribed manner. One or more traffic segments may be associated with a particular assignment segment. A base station broadcasts via an assignment segment which wireless terminal is to use a particular traffic segment. This is realized by transmitting a simply identifier for the particular wireless terminal assigned to the particular traffic segment in the assignment segment. Then, each active wireless terminal monitors all of the received assignment segments to detect any traffic channel assignments. Once a wireless terminal detects its identifier in an assignment segment, it proceeds to receive/transmit the traffic data in the traffic segment associated with the assignment segment including the detected identifier.
摘要:
Improved timing synchronization and access control techniques for use in an orthogonal frequency division multiplexed (OFDM) wireless system or other type of wireless communication system. In accordance with the invention, an uplink synchronization and access control system is provided in which mobile stations transmit certain timing and access signals in dedicated intervals in an uplink stream. Access control is illustratively implemented as a two-stage process in which a given mobile first transmits a generic uplink access signal in one of the intervals. If this access is accepted, the base station transmits an access acknowledgment containing initial timing and power corrections, along with initial channel assignments on which the mobile can initiate a call set-up process. For re-synchronization, mobiles transmit timing synchronization signals in the dedicated timing and access intervals. The base station measures the arrival time of the signals, and sends back appropriate timing corrections. The invention thereby ensures that orthogonality between mobiles is maintained.
摘要:
Latency in receiving and detecting paging messages at a wireless terminal is reduced by employing a unique “super” paging time slot format. A paging super time slot includes a plurality of prescribed time slots. Each wireless terminal is associated with cyclically recurring super time slots. A super slot is associated with one or more wireless terminals. A base station always selects the first available time slot in a super time slot to transmit a paging message to a wireless terminal that is associated with the super time slot. Each wireless terminal monitors every time slot in the associated super time slot until either detecting reception of its associated paging message or detecting an empty time slot. In another embodiment of the invention, a unique partially overlapping super time slot format is employed in which a super time slot has at least one time slot common to its adjacent super time slots. This allows wireless terminals associated with adjacent super time slots to share the common at least one time slot. In turn, this results in balanced traffic loads, smoothed traffic fluctuation and reduced congestion.
摘要:
Methods and apparatus related to assignment in a wireless communications system are described. A mobile is assigned an identifier and a mask value, e.g., as part of a state transition message. The mobile uses the assigned identifier and/or the assigned mask value in determining whether assignments included in assignment messages, e.g., traffic channel assignment messages, are directed to the wireless terminal. Predetermined associations between assignment slots, assigned segments, and/or mask values are utilized to limit control signaling overhead. Different groups of segments are available for assignment to different wireless terminals as a function of mask values. Different types of assignment messages use different amounts of information bits to convey the assignment. Some types of assignments use a wireless terminal identifier, while other types of assignments use a wireless terminal identifier and a mask identifier. The mask identifier, e.g., a single bit, allows for selection between a subset of the potential masks used in the system.
摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.